Advertisement

Cluster in Nuclei: Experimental Perspectives

  • P. PapkaEmail author
  • C. Beck
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 848)

Abstract

This lecture notes treat some experimental aspects of nuclear cluster states studies, ranging from traditional techniques to some of the most recent developments and emerging methods. Experimental investigations, in the field of nuclear clusters are discussed in terms of detection techniques and associated electronics. Recent developments in accelerator technology and targetry are also presented in the scope of new opportunities in cluster studies. The nature of cluster states makes exclusive measurements crucial. It requires the simultaneous detection of nucleons, light, intermediate-mass and heavy fragments, and possibly \(\gamma\)-rays together with timing information. Precise measurements of angular correlations and energy distributions between emitted particles are needed for kinematic reconstruction in order to achieve a detailed study of the decay modes and the underlying dynamics. Within this scope, highly segmented and high-efficiency detection systems are depicted. Developments in digital signal processing have made possible major advances in experimental nuclear physics. The combination of large numbers of channels with fast data acquisition systems is one of the key aspects of this modern technology. Nuclear reactions play a key role in the study of the structure of nuclear clusters. Therefore, aspects of acceleration, including high-intensity, low-energy stable and radioactive beams are presented. Targetry has received a renewed interest with the advent of active targets (ACTAR). The combination of radioactive beams and active targets for the study of nuclear clustering is certainly opening new horizons in this field of physics. A number of current experimental setups and computer codes are cited to illustrate some of the techniques described but this list is by no means exhaustive.

Keywords

Accelerator Mass Spectrometry Magnetic Spectrometer Particle Identification Ternary Fission Pulse Shape Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chatterjee, A., et al.: Phys. Rev. Lett. 101, 032701 (2008)ADSGoogle Scholar
  2. 2.
    Ikeda, K., Myo, T., Kato, K., Toki H.: In: Beck, C. (ed.) Clusters in Nuclei. Lecture Notes in Physics vol. 818, p. 165. Springer, Berlin (2010)Google Scholar
  3. 3.
    Horiuchi, H.: In: Beck, C. (ed.) Clusters in Nuclei. Lecture Notes in Physics, vol. 818, p. 57. Springer, Berlin (2010)Google Scholar
  4. 4.
    Hoyle, F.: Astrophys. J. Supp. 1, 121 (1954)ADSGoogle Scholar
  5. 5.
    Poenaru, D., Greiner, W.: In: Beck, C. (ed.) Clusters in Nuclei. Lecture Notes in Physics, vol. 818, p. 1 (2010)Google Scholar
  6. 6.
    Price, P.B.: Ann. Rev. Nucl. Part. Sci. 39, 19 (1989)ADSGoogle Scholar
  7. 7.
    Price, P.B.: Nucl. Phys. A 502, 41 (1989)ADSGoogle Scholar
  8. 8.
    Rose, H.J., Jones, G.A.: Nature 307, 245 (1984)ADSGoogle Scholar
  9. 9.
    Gales, S., et al.: Phys. Rev. Lett 53, 759 (1984)ADSGoogle Scholar
  10. 10.
    Hourani, E., et al.: Phys. Lett. 60, 375 (1985)Google Scholar
  11. 11.
    Hourani, E., et al.: Nucl. Instr. Meth. A 264, 357 (1988)ADSGoogle Scholar
  12. 12.
    Hourani, E., et al.: Phys. Rev. C 44, 1424 (1991)ADSGoogle Scholar
  13. 13.
    Price, P.B., Stevenson, J.D., Barwick, S.W., Ravn, H.L.: Phys. Rev. Lett. 54, 297 (1985)ADSGoogle Scholar
  14. 14.
    Shicheng, W., et al.: Phys. Rev. C 36, 2717 (1987)Google Scholar
  15. 15.
    Bonetti, R., et al.: Eur. Phys. J. A 5, 235 (1999)ADSGoogle Scholar
  16. 16.
    Bonetti, R., Guglielmetti, A.: Rom. Rep. Phys. 59, 301 (2007)Google Scholar
  17. 17.
    Srour, J.R., Lo, D.H.: IEEE Trans. Nucl. Sci. 47, 1289 (2004)Google Scholar
  18. 18.
    Kutschera, W.: Nucl. Instr. Meth. A 123, 594 (1997)ADSGoogle Scholar
  19. 19.
    Libby, W.F.: Phys. Rev. 69, 671 (1946)ADSGoogle Scholar
  20. 20.
    Figuera, P., et al.: Z. Phys. A 352, 315 (1995)ADSGoogle Scholar
  21. 21.
    Hilscher, D., et al.: Nucl. Instr. Meth. A 414, 100 (1998)Google Scholar
  22. 22.
    Ortlepp, H.-G., et al.: Nucl. Instr. Meth. A 403, 65 (1998)ADSGoogle Scholar
  23. 23.
    Tyukavkin, A.N., et al.: Instr. Exp. Tech. 52, 508 (2009)Google Scholar
  24. 24.
    Pyatkov Yu., V., et al.: Phys. Atomic Nucl. 73, 1309 (2010)ADSGoogle Scholar
  25. 25.
    Rubio, B., Gelletly, W.: Lecture Notes in Physics, vol. 764, p. 99. Springer, Berlin (2009)Google Scholar
  26. 26.
    Severijns, A.: Lecture Notes in Physics, vol. 651, p. 339. Springer, Berlin (2004)Google Scholar
  27. 27.
    Fynbo, H.O.U., et al.: Nature 433, 136 (2005)ADSGoogle Scholar
  28. 28.
    Borge, M.J.G., et al.: Physica Scripta T 125, 103 (2006)ADSGoogle Scholar
  29. 29.
    Smirnov, D., et al.: Nucl. Instr. Meth. A 547, 480 (2005)ADSGoogle Scholar
  30. 30.
    Hyldegaard, S., et al.: Phys. Lett. B 678, 459 (2009)ADSGoogle Scholar
  31. 31.
    Riisager, K.: Lecture Notes in Physics, vol. 700, p. 1. Springer, Berlin (2006)Google Scholar
  32. 32.
    Goldansky, V.I.: Nucl. Phys. 19, 482 (1960)Google Scholar
  33. 33.
    Blank, B., Ploszajczak, M.: Rep. Prog. Phys. 71, 046301 (2008)ADSGoogle Scholar
  34. 34.
    Blank, B.: Lect. Notes Phys. 764, 153 (2009)Google Scholar
  35. 35.
    Giovinazzo, J., et al.: Phys. Rev. Lett. 89, 102501 (2002)ADSGoogle Scholar
  36. 36.
    Pfützner, M., et al.: Eur. Phys. J. A 14, 279 (2002)ADSGoogle Scholar
  37. 37.
    Mukha, I., et al.: Phys. Rev. C 77, 061303 (2008)ADSGoogle Scholar
  38. 38.
    Mukha, I., et al.: Phys. Rev. C 82, 054315 (2010)ADSGoogle Scholar
  39. 39.
    Giovinazzo, J., et al.: Phys. Rev. Lett. 99, 102501 (2007)ADSGoogle Scholar
  40. 40.
    Huyse, M.: Lect. Notes Phys. 651, 1 (2004)ADSGoogle Scholar
  41. 41.
    Alamanos, N., Gillibert, G.: Lect. Notes Phys. 651, 295 (2004)ADSGoogle Scholar
  42. 42.
    Morrissey, D.J., Sherril, B.: Lect. Notes Phys. 651, 113 (2004)ADSGoogle Scholar
  43. 43.
    Freer, M., et al.: Phys. Rev. C 80, 041303(R) (2009)ADSGoogle Scholar
  44. 44.
    Raabe, R., et al.: Phys. Rev. C 80, 054307 (2009)ADSGoogle Scholar
  45. 45.
    Raabe, R., et al.: Phys. Rev. Lett. 101, 212501 (2008)ADSGoogle Scholar
  46. 46.
    Abgrall, Y., Gabinski, P., Labarsouque, J.: Nucl. Phys. A 232, 235 (1974)ADSGoogle Scholar
  47. 47.
    Crannell, H., et al.: Nucl. Phys. A 758, 399 (2005)ADSGoogle Scholar
  48. 48.
    Freer, M., et al.: Phys. Rev. C 76, 034320 (2007)ADSGoogle Scholar
  49. 49.
    Funaki, Y., et al.: Phys. Rev. Lett. 101, 082502 (2008)ADSGoogle Scholar
  50. 50.
    Chernykh, K., et al.: Phys. Rev. Lett. 105, 022501 (2010)ADSGoogle Scholar
  51. 51.
    Chernykh, K., et al.: Phys. Rev. Lett. 98, 032501 (2007)ADSGoogle Scholar
  52. 52.
    Schatz, H., et al.: Phys. Rev. Lett. 79, 3845 (1997)ADSGoogle Scholar
  53. 53.
    Kouzes, R., et al.: Nucl. Phys. A 286, 253 (1977)ADSGoogle Scholar
  54. 54.
    Papka, P., et al.: Phys. Rev. C 81, 054308 (2010)ADSGoogle Scholar
  55. 55.
    Fortier, S., et al.: Phys. Lett. B 461, 22 (1999)ADSGoogle Scholar
  56. 56.
    Cappuzzello, F., et al.: Phys. Lett. B 516, 21 (2001)ADSGoogle Scholar
  57. 57.
    Gade, A., Glasmacher, T.: Prog. Part. Nucl. Phys. 60, 161 (2008)ADSGoogle Scholar
  58. 58.
    Nociforo, C., et al.: Phys. Lett. B 605, 79 (2005)ADSGoogle Scholar
  59. 59.
    Gaelens, M.: Nucl. Instr. Meth. B 204, 48 (2003)ADSGoogle Scholar
  60. 60.
  61. 61.
    Gialanella, L., et al.: Nucl. Instr. Meth. A 522, 432 (2004)ADSGoogle Scholar
  62. 62.
    Mohr, P., et al.: Phys. Rev. C 50, 1543 (1994)ADSGoogle Scholar
  63. 63.
    Kölle, V., et al.: Nucl. Instr. Meth. A 431, 160 (1999)ADSGoogle Scholar
  64. 64.
    Wilmes, S., et al.: Phys. Rev. C 66, 065802 (2002)ADSGoogle Scholar
  65. 65.
    Vorobyov, A.A., et al.: Nucl. Instr. Meth. 119, 509 (1974)Google Scholar
  66. 66.
    Dolégiéviez, P., et al.: Nucl. Instr. Meth. A 564, 32 (2006)ADSGoogle Scholar
  67. 67.
    Knowles, P.E., et al.: Nucl. Instr. Meth. A 368, 604 (1996)ADSGoogle Scholar
  68. 68.
    Sakurai, H.: Nucl. Phys. A 805, 526c (2008)ADSGoogle Scholar
  69. 69.
    Ishimoto, S., et al.: Nucl. Instr. Meth. A 480, 304 (2002)ADSGoogle Scholar
  70. 70.
    Dobrovolsky, A.V.: Nucl. Phys. B 214, 1 (1983)ADSGoogle Scholar
  71. 71.
    Mizoi, Y.: Nucl. Instr. Meth. A 431, 112 (1999)ADSGoogle Scholar
  72. 72.
    Roussel-Chomaz, P.: Eur. Phys. J. A 42, 447 (2009)ADSGoogle Scholar
  73. 73.
    Demonchy, C.E., et al.: Nucl. Instr. Meth. A 583, 341 (2007)ADSGoogle Scholar
  74. 74.
    Blank, B., et al.: Nucl. Instr. Meth. A 613, 65 (2010)ADSGoogle Scholar
  75. 75.
    Laird, A.M.: Nucl. Instr. Meth. A 573, 306 (2007)ADSGoogle Scholar
  76. 76.
    Sauli, F.: Nucl. Instr. Meth. A 386, 531(1997). http://cerncourier.com/cws/article/cern/27921and/29894
  77. 77.
  78. 78.
    Leo, W.R.: Techniques for Nuclear and Particle Physics Experiments. Springer, Berlin (1987)Google Scholar
  79. 79.
    Knoll, G.F.: Radiation Detection and Measurement. Wiley, New York (1989)Google Scholar
  80. 80.
    Nicolini, R., et al.: Nucl. Instr. Meth. A 582, 554 (2007)ADSGoogle Scholar
  81. 81.
    Dorenbos, P., et al.: IEEE Trans. Nucl. Sci 51(3), 1289–1296 (2004)ADSGoogle Scholar
  82. 82.
    Paris collaboration, http://paris.ifj.edu.plGoogle Scholar
  83. 83.
    Lee, I.-Y: Nucl. Phys. A 834, 743 (2010)ADSGoogle Scholar
  84. 84.
    Gelletly, W., Eberth, J.: Lect. Notes Phys. 700, 79 (2006)ADSGoogle Scholar
  85. 85.
    Eberth, J., Simpson, J.: Prog. Part. Nucl. Phys. 60, 283 (2008)ADSGoogle Scholar
  86. 86.
    Ball, G.C., et al.: Nucl. Phys. A 787, 118 (2007)ADSGoogle Scholar
  87. 87.
    Baglin, C.M., et al.: Nucl. Instr. Meth. A 481, 365 (2002)ADSGoogle Scholar
  88. 88.
    Mulgin, S.I., et al.: Nucl. Instr. Meth. A 388, 254 (1997)ADSGoogle Scholar
  89. 89.
    Yanagimachi, T., et al.: Nucl. Instr. Meth. A 275, 307 (1989)ADSGoogle Scholar
  90. 90.
    Ieki, K., et al.: Nucl. Instr. Meth. A 297, 312 (1990)ADSGoogle Scholar
  91. 91.
    Bergmann, U.C., Fynbo, H.O.U., Tengblad, O.: Nucl. Instr. Meth. A 515, 657 (2003)ADSGoogle Scholar
  92. 92.
    Tengblad, O., et al.: Nucl. Instr. and Meth. A 525, 458 (2004)ADSGoogle Scholar
  93. 93.
    Blumenfeld, Y., et al.: Nucl. Instr. Meth. A 421, 471 (1999)ADSGoogle Scholar
  94. 94.
    Pollacco, E., et al.: Eur. Phys. J. A 25, s01, 287 (2005)Google Scholar
  95. 95.
    Mukha, I.: Eur. Phys. J. A 42, 421 (2009)ADSGoogle Scholar
  96. 96.
    Stanoiu, M., et al.: Nucl. Instr. Meth. B 266, 4625 (2008)ADSGoogle Scholar
  97. 97.
    Montagnoli, G., et al.: Nucl. Instr. Meth. A 547, 455 (2005)ADSGoogle Scholar
  98. 98.
    Bachmann, S., et al.: Nucl. Phys. A, 663–664, 1069c (2000)Google Scholar
  99. 99.
    Giomataris, Y., et al.: Nucl. Instr. Meth. A 376, 29 (1996)ADSGoogle Scholar
  100. 100.
    Giomataris, Y.: Nucl. Instr. Meth. A 419, 239 (1998)ADSGoogle Scholar
  101. 101.
    Drouart, A., et al.: Nucl. Instr. Meth. A 579, 1090 (2007)ADSGoogle Scholar
  102. 102.
    Altunbas, C., et al.: Nucl. Instr. Meth. A 490, 177 (2002)ADSGoogle Scholar
  103. 103.
    Pagano, A., et al.: Nucl. Phys. A 734, 504 (2004)ADSGoogle Scholar
  104. 104.
    Tilquin, I., et al.: Nucl. Instr. Meth. A 365, 446 (1995)ADSGoogle Scholar
  105. 105.
    Marqués, F.M., et al.: Phys. Rev. C 65, 044006 (2002)ADSGoogle Scholar
  106. 106.
    Skeppstedta, Ö., et al.: Nucl. Instr. Meth. A 421, 531 (1999)ADSGoogle Scholar
  107. 107.
    Baumann, T., et al.: Nucl. Instr. Meth. A 543, 517 (2005)ADSGoogle Scholar
  108. 108.
    Gerlic, E., et al.: Phys. Rev. C 39, 2190 (1989)ADSGoogle Scholar
  109. 109.
    Mihailidis, D.N., et al.: Phys. Rev. C 64, 054608 (2001)ADSGoogle Scholar
  110. 110.
    Tamii, A., et al.: Nucl. Instr. Meth. A 605, 326 (2009)ADSGoogle Scholar
  111. 111.
    Neveling, R., et al.: Nucl. Instr. Meth. A 654, 29 (2011)ADSGoogle Scholar
  112. 112.
    Hutcheon, D.A., et al.: Nucl. Instr. Meth. A 498, 190 (2003)ADSGoogle Scholar
  113. 113.
    Gadea, A., et al.: J. Phys. G Nucl. Part. Phys. 31, S1443 (2005)Google Scholar
  114. 114.
    Salsac, M.-D., et al.: Nucl. Phys. A 801, 1 (2008)ADSGoogle Scholar
  115. 115.
    Jenkins, D.G., et al.: Phys. Rev. C 76, 044310 (2007)ADSGoogle Scholar
  116. 116.
    Ottini-Hustache, S., et al.: Nucl. Instr. Meth. A 431, 476 (1999)ADSGoogle Scholar
  117. 117.
    Pancin, A., et al.: J. Instr. 4, 12012 (2009)ADSGoogle Scholar
  118. 118.
    Petri, M., et al.: Nucl. Instr. Meth. A 607, 412 (2009)ADSGoogle Scholar
  119. 119.
    Cardella, G., et al.: Nucl. Instr. Meth. A 378, 262 (1996)ADSGoogle Scholar
  120. 120.
    Skulski, W., Momayezia, M.: Nucl. Instr. Meth. A 458, 759 (2001)ADSGoogle Scholar
  121. 121.
    Litherland, A.E., et al.: Phys. Rev. Lett. 2, 104 (1959)ADSGoogle Scholar
  122. 122.
    Alderighi, M., et al.: IEEE Trans. Nucl. Sci. 52, 1624 (2005)ADSGoogle Scholar
  123. 123.
    Alderighi, M., et al.: IEEE Trans. Nucl. Sci 53, 279 (2006)ADSGoogle Scholar
  124. 124.
    Beck, C., et al.: Phys. Rev. C 80, 034604 (2009)ADSGoogle Scholar
  125. 125.
    Ellison, P.A., et al.: Phys. Rev. Lett. 105, 182701 (2010)ADSGoogle Scholar
  126. 126.
    Uusitalo, J., et al.: Nucl. Instr. Meth. B 204, 638 (2003)ADSGoogle Scholar
  127. 127.
    Julin, R.: Lect. Notes Phys. 651, 263 (2004)ADSGoogle Scholar
  128. 128.
    Schmitt, C., et al.: Nucl. Instr. Meth. A 621, 558 (2010)ADSGoogle Scholar
  129. 129.
    Ritt, S., Amaudruz, P., Olchanski, K.: http://midas.psi.chGoogle Scholar
  130. 130.
    Biedenharn, L.C., Rose, M.E.: Rev. Mod. Phys 25, 729 (1953)ADSzbMATHGoogle Scholar
  131. 131.
    Papka, P., et al.: Phys. Rev. C 81, 054308 (2010)ADSGoogle Scholar
  132. 132.
    Muñoz-Britton, T., et al.: J. Phys. G 37, 105104 (2010)ADSGoogle Scholar
  133. 133.
    Dalitz, R.H.: Philos. Mag. 44, 1068 (1953)Google Scholar
  134. 134.
    Fynbo, H.O.U., et al.: Phys. Rev. Lett. 91, 082502 (2003)ADSGoogle Scholar
  135. 135.
    Tarasov, O., Bazin, D., Lewitowicz, M., Sorlin, O.: Nucl. Phys. A 701, 661c (2002). http://www.nscl.msu.edu/lise
  136. 136.
    Ziegler, J.F.: Nucl. Instr. Meth. B 1027, 219–220 (2004)Google Scholar
  137. 137.
    Ziegler, J.F.: http://www.srim.org/
  138. 138.
    Agostinelli, S., et al.: Nucl. Instr. Meth. A 506, 250–303 (2003). http://www.geant4.org/
  139. 139.
    Fassò, A., et al.: Proceedings of the Monte Carlo 2000 Conference, p. 955. Springer, Berlin (2001). http://www.fluka.org/fluka.php
  140. 140.
    Alvarez, H.: http://fpsalmon.usc.es/actar/index.shtmlGoogle Scholar
  141. 141.
    Roger, T., et al.: Nucl. Instr. Meth. A 638, 134 (2011)ADSGoogle Scholar
  142. 142.
    Brun, R.: Nucl. Instr. Meth. A 389, 81 (1997). http://root.cern.ch/Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of StellenboschStellenboschSouth Africa
  2. 2.Département de Recherches SubatomiquesInstitut Pluridisciplinaire Hubert Curien IN2P3/CNRS and Université de StrasbourgStrasbourg Cedex 2France

Personalised recommendations