Skip to main content

Improving SAT Modulo ODE for Hybrid Systems Analysis by Combining Different Enclosure Methods

  • Conference paper
Software Engineering and Formal Methods (SEFM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7041))

Included in the following conference series:

Abstract

Aiming at automatic verification and analysis techniques for hybrid systems, we present a novel combination of enclosure methods for ordinary differential equations (ODEs) with the iSAT solver for large Boolean combinations of arithmetic constraints. Improving on our previous work, the contribution of this paper lies in combining iSAT with VNODE-LP, as a state-of-the-art enclosure method for ODEs, and with bracketing systems which exploit monotonicity properties to find enclosures for problems that VNODE-LP alone cannot enclose tightly. We apply our method to the analysis of a non-linear hybrid system by solving predicative encodings of an inductive stability argument and evaluate the impact of different methods and their combination.

This work has been supported by the German Research Council DFG within SFB/TR 14 “Automatic Verification and Analysis of Complex Systems” ( www.avacs.org ) and by the Natural Sciences and Engineering Research Council of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berz, M.: COSY INFINITY version 8 reference manual. Tech. Rep. MSUCL–1088, National Superconducting Cyclotron Lab., Michigan State University, USA (1997)

    Google Scholar 

  2. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving. Commun. ACM 5, 394–397 (1962)

    Article  MATH  Google Scholar 

  3. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal of the ACM 7(3), 201–215 (1960)

    Article  MATH  Google Scholar 

  4. Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: A direct SAT approach to hybrid systems. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 171–185. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. JSAT Special Issue on Constraint Programming and SAT 1(3-4), 209–236 (2007)

    MATH  Google Scholar 

  6. Goldsztejn, A., Mullier, O., Eveillard, D., Hosobe, H.: Including ordinary differential equations based constraints in the standard CP framework. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 221–235. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Henzinger, T., Horowitz, B., Majumdar, R., Wong-Toi, H.: Beyond HYTECH: Hybrid systems analysis using interval numerical methods. In: Lynch, N., Krogh, B. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 130–144. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Ishii, D., Ueda, K., Hosobe, H.: An interval-based SAT modulo ODE solver for model checking nonlinear hybrid systems. International Journal on Software Tools for Technology Transfer (STTT), 1–13 (March 2011)

    Google Scholar 

  9. Ishii, D., Ueda, K., Hosobe, H., Goldsztejn, A.: Interval-based solving of hybrid constraint systems. In: Proceedings of the 3rd IFAC Conference on Analysis and Design of Hybrid Systems, pp. 144–149 (2009)

    Google Scholar 

  10. Kieffer, M., Walter, E., Simeonov, I.: Guaranteed nonlinear parameter estimation for continuous-time dynamical models. In: Proceedings 14th IFAC Symposium on System Identification, Newcastle, Aus, pp. 843–848 (2006)

    Google Scholar 

  11. Müller, M.: Über das Fundamentaltheorem in der Theorie der gewöhnlichen Differentialgleichungen. Mathematische Zeitschrift 26, 619–645 (1927)

    Article  MATH  Google Scholar 

  12. Nedialkov, N.S.: VNODE-LP — a validated solver for initial value problems in ordinary differential equations. Tech. Rep. CAS-06-06-NN, Department of Computing and Software, McMaster University, Hamilton, Ontario, L8S 4K1 (2006), VNODE-LP http://www.cas.mcmaster.ca/~nedialk/vnodelp

  13. Nedialkov, N.S.: Implementing a rigorous ODE solver through literate programming. In: Rauh, A., Auer, E. (eds.) Modeling, Design, and Simulation of Systems with Uncertainties, Mathematical Engineering, vol. 3, pp. 3–19. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Nedialkov, N.S.: Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation. Ph.D. thesis, Department of Computer Science, University of Toronto, Toronto, Canada, M5S 3G4 (February 1999)

    Google Scholar 

  15. Podelski, A., Wagner, S.: Region stability proofs for hybrid systems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 320–335. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Ramdani, N., Meslem, N., Candau, Y.: A hybrid bounding method for computing an over-approximation for the reachable space of uncertain nonlinear systems. IEEE Transactions on Automatic Control 54(10), 2352–2364 (2009)

    Article  Google Scholar 

  17. Ramdani, N., Meslem, N., Candau, Y.: Computing reachable sets for uncertain nonlinear monotone systems. Nonlinear Analysis: Hybrid Systems 4(2), 263–278 (2010)

    MATH  Google Scholar 

  18. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation based abstraction refinement. ACM Transactions in Embedded Computing Systems 6(1) (2007)

    Google Scholar 

  19. Shtrichman, O.: Tuning SAT checkers for bounded model checking. In: Emerson, E., Sistla, A. (eds.) CAV 2000. LNCS, vol. 1855, pp. 480–494. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Stursberg, O., Kowalewski, S., Hoffmann, I., Preußig, J.: Comparing timed and hybrid automata as approximations of continuous systems. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1996. LNCS, vol. 1273, pp. 361–377. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eggers, A., Ramdani, N., Nedialkov, N., Fränzle, M. (2011). Improving SAT Modulo ODE for Hybrid Systems Analysis by Combining Different Enclosure Methods. In: Barthe, G., Pardo, A., Schneider, G. (eds) Software Engineering and Formal Methods. SEFM 2011. Lecture Notes in Computer Science, vol 7041. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24690-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24690-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24689-0

  • Online ISBN: 978-3-642-24690-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics