Advertisement

Generic Parallel Genetic Algorithm Framework for Protein Optimisation

  • Lukas Folkman
  • Wayne Pullan
  • Bela Stantic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7017)

Abstract

Proteins are one of the most vital macromolecules on the cellular level. In order to understand the function of a protein, its structure needs to be determined. For this purpose, different computational approaches have been introduced. Genetic algorithms can be used to search the vast space of all possible conformations of a protein in order to find its native structure. A framework for design of such algorithms that is both generic, easy to use and performs fast on distributed systems may help further development of genetic algorithm based approaches. We propose such a framework based on a parallel master-slave model which is implemented in C++ and Message Passing Interface. We evaluated its performance on distributed systems with a different number of processors and achieved a linear acceleration in proportion to the number of processing units.

Keywords

Parallel Genetic Algorithm Protein Optimisation Protein Structure Prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bradley, P., Chivian, D., Meiler, J., Misura, K., Rohl, C., Schief, W., Wedemeyer, W., Schueler-Furman, O., Murphy, P., Schonbrun, J., et al.: Rosetta predictions in CASP5: successes, failures, and prospects for complete automation. Proteins: Structure, Function, and Bioinformatics 53(S6), 457–468 (2003)CrossRefGoogle Scholar
  2. 2.
    Cahon, S., Melab, N., Talbi, E.: ParadisEO: A framework for the reusable design of parallel and distributed metaheuristics. Journal of Heuristics 10(3), 357–380 (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Calvo, J., Ortega, J.: Parallel protein structure prediction by multiobjective optimization. In: 2009 17th Euromicro International Conference on Parallel, Distributed and Network-based Processing, pp. 268–275 (2009)Google Scholar
  4. 4.
    Higgs, T., Stantic, B., Hoque, M., Sattar, A.: Genetic algorithm feature-based resampling for protein structure prediction. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE, Los Alamitos (2010)Google Scholar
  5. 5.
    Kihara, D., Lu, H., Kolinski, A., Skolnick, J.: TOUCHSTONE: an ab initio protein structure prediction method that uses threading-based tertiary restraints. Proceedings of the National Academy of Sciences of USA 98(18), 10125 (2001)CrossRefGoogle Scholar
  6. 6.
    Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lee, J., Scheraga, H., Rackovsky, S.: Conformational analysis of the 20-residue membrane-bound portion of melittin by conformational space annealing. Biopolymers 46(2), 103–115 (1998)CrossRefGoogle Scholar
  8. 8.
    Li, Z., Scheraga, H.: Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proceedings of the National Academy of Sciences of USA 84(19), 6611 (1987)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Oldziej, S., Czaplewski, C., Liwo, A., Chinchio, M., Nanias, M., Vila, J., Khalili, M., Arnautova, Y., Jagielska, A., Makowski, M., et al.: Physics-based protein-structure prediction using a hierarchical protocol based on the UNRES force field: assessment in two blind tests. Proceedings of the National Academy of Sciences of USA 102(21), 7547 (2005)CrossRefGoogle Scholar
  10. 10.
    Pullan, W.: An unbiased population-based search for the geometry optimization of Lennard–Jones clusters: 2 ≤ N ≤ 372. Journal of Computational Chemistry 26(9), 899–906 (2005)CrossRefGoogle Scholar
  11. 11.
    Rohl, C., Strauss, C., Misura, K., Baker, D.: Protein structure prediction using Rosetta. Methods in Enzymology 383, 66–93 (2004)CrossRefGoogle Scholar
  12. 12.
    Santos, E., Lu, L., Santos Jr., E.: Efficiency of Parallel Genetic Algorithms For Protein Folding on 2-D HP Model. In: Proceedings of the Fifth Joint Conference in Information Sciences, Third International Workshop on Frontiers of Evolutionary Algorithms, Atlantic City, NJ, pp. 1094–1097 (2000)Google Scholar
  13. 13.
    Unger, R., Moult, J.: Genetic algorithms for protein folding simulations. Journal of Molecular Biology 231(1), 75–81 (1993)CrossRefGoogle Scholar
  14. 14.
    Van Veldhuizen, D., Zydallis, J., Lamont, G.: Considerations in engineering parallel multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(2), 144–173 (2003)CrossRefGoogle Scholar
  15. 15.
    Wu, S., Skolnick, J., Zhang, Y.: Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biology 5(1), 1741–7007 (2007)CrossRefGoogle Scholar
  16. 16.
    Zhang, Y., Skolnick, J.: Scoring function for automated assessment of protein structure template quality. Proteins: Structure, Function, and Bioinformatics 68(4), 1020 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lukas Folkman
    • 1
  • Wayne Pullan
    • 1
  • Bela Stantic
    • 1
  1. 1.Institute for Integrated and Intelligent SystemsGriffith UniversityAustralia

Personalised recommendations