Reconfigurable Hardware to Radionuclide Identification Using Subtractive Clustering

  • Marcos Santana Farias
  • Nadia Nedjah
  • Luiza de Macedo Mourelle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7017)


Radioactivity is the spontaneous emission of energy from unstable atoms. Radioactive sources have radionuclides. Radionuclide undergoes radioactive decay and emits gamma rays and subatomic particles, constituting the ionizing radiation. The gamma ray energy of a radionuclide is used to determine the identity of gamma emitters present in the source. This paper describes the hardware implementation of subtractive clustering algorithm to perform radionuclide identification.


Radionuclides data classification reconfigurable hardware subtractive clustering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Journal of Cybernetics 3, 32–57 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Yager, R.R., Filev, D.P.: Learning of Fuzzy Rules by Mountain Clustering. In: Proc. of SPIE Conf. on Application of Fuzzy Logic Technology, Boston, pp. 246–254 (1993)Google Scholar
  3. 3.
    Chiu, S.L.: A Cluster Estimation Method with Extension to Fuzzy Model Identification. In: Proc. IEEE Internat. Conf. on Fuzzy Systems, pp. 1240–1245 (1994)Google Scholar
  4. 4.
    Navabi, Z.: VHDL - Analysis and Modeling of Digital Systems, 2nd edn. McGraw Hill, New York (1998)Google Scholar
  5. 5.
    The MathWorks, Inc.: Fuzzy Logic Toolbox - For Use With MATLAB. The MathWorks, Inc. (1999)Google Scholar
  6. 6.
    ANSI Standard N42.34: Performance Criteria for Hand-held Instruments for the Detection and Identification of Radionuclides (2003)Google Scholar
  7. 7.
    Hathaway, R.J., Bezdek, J.C., Hu, Y.: Generalized fuzzy C-means clustering strategies using Lp norm distances. IEEE Transactions on Fuzzy Systems 8, 576–582 (2000)CrossRefGoogle Scholar
  8. 8.
    Rao, C.R., Toutenburg, H., Fieger, A., Heumann, C., Nittner, T., Scheid, S.: Linear Models: Least Squares and Alternatives. Springer Series in Statistics (1999)Google Scholar
  9. 9.
    Santi-Jones, P., Gu, D.: Fractional fixed point neural networks: an introduction. Department of Computer Science, University of Essex, Wivenhoe Park, Colchester, Essex (2008)Google Scholar
  10. 10.
    Knoll, G.F.: Radiation Detection and Measurement, 2nd edn. John Wiley & Sons, Chichester (1989)Google Scholar
  11. 11.
    Gilmore, G., Hemingway, J.: Practical Gamma Ray Spectrometry. John Wiley & Sons, Chichester (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marcos Santana Farias
    • 1
  • Nadia Nedjah
    • 2
  • Luiza de Macedo Mourelle
    • 3
  1. 1.Department of InstrumentationNuclear Engineering InstituteBrazil
  2. 2.Department of Electronics Engineering and TelecommunicationsState University of Rio de JaneiroBrazil
  3. 3.Department of Systems Engineering and ComputationState University of Rio de JaneiroBrazil

Personalised recommendations