Queue-Based Adaptive Duty Cycle Control for Wireless Sensor Networks

  • Heejung Byun
  • Jungmin So
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7017)


This paper proposes a control-based approach to duty cycle adaptation for wireless sensor networks. The proposed method controls duty cycle through queue management in order to achieve high performance under variable traffic rates. To have energy efficiency while minimizing the delay, we design a feedback controller, which adapts sleeping interval time to traffic change dynamically by constraining the queue length at a predetermined value. Based on the control theory, we analyze the adaptation behavior of the proposed controller and demonstrate system stability. The simulation results show that the proposed method outperforms existing scheduling protocols by achieving more energy savings while minimizing the delay.


Wireless sensor networks energy delay queue management analytic analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bachir, A., Dohler, M., Watteyne, T., Leung, K.K.: MAC essentials for wireless sensor networks. IEEE Communications Surveys & Tutorials 12, 222–248 (2010)CrossRefGoogle Scholar
  2. 2.
    Ye, W., Heidemann, J., Estrin, D.: An energy-efficient MAC protocol for wirelss sensor networks. In: Proceedings of IEEE Infocom, pp. 1567–1576 (2002)Google Scholar
  3. 3.
    Van Dam, T., Langendoen, K.: An adaptive energy-efficient MAC protocol for wireless sensor networks. In: Proceedings of ACM Sensys, pp. 171–180 (2003)Google Scholar
  4. 4.
    Havinga, P., Smit, G.: E2MaC: an energy efficient MAC protocol for multimedia traffic. Techinical Report (1998)Google Scholar
  5. 5.
    Ye, W., Heidemann, J., Estrin, D.: Medium access control with coordinated, adaptive sleeping for wireless sensor network. IEEE Trans. on Networking 12, 493–506 (2004)CrossRefGoogle Scholar
  6. 6.
    Lin, P., Qiao, C., Wang, X.: Medium access control with a dynamic duty cycle for sensor networks. In: Proceedings of IEEE WCNC, vol. 3, pp. 1534–1539 (2004)Google Scholar
  7. 7.
    Yang, S.H., Tseng, H.-W., Wu, E., Chen, G.-H.: Utilization based duty cycle tuning MAC protocol for wireless sensor networks. In: Proc. of IEEE GLOBECOM, vol. 6, pp. 3258–3262 (2005)Google Scholar
  8. 8.
    Liu, Z., Elhanany, I.: RL-MAC: a reinforcement learning based MAC protocol for wireless sensor networks. International Journal of Sensor Networks 1, 117–124 (2006)CrossRefGoogle Scholar
  9. 9.
    Wang, X., Xing, G., Yao, Y.: Dynamic duty cycle control for end-to-end delay guarantees in wireless sensor networks. In: International Workshop on Quality of Service (IWQoS), pp. 1–9 (2010)Google Scholar
  10. 10.
    Jurdak, R., Baldi, P., Lopes, C.V.: Energy-aware adaptive low power listening for sensor networks. In: Proceedings of INSS, pp. 24–29 (2005)Google Scholar
  11. 11.
    Hu, H., Yang, Z.: The study of power control based cooperative opportusnistic routing in wireless sensor networks. In: Proceedings of ISPACS, pp. 345–348 (2007)Google Scholar
  12. 12.
    Lim, J.-T., Shim, K.H.: Asymptotic performance evaluation of token passing networks. IEEE Trans. Industrial Electronics 40, 384–385 (1993)CrossRefGoogle Scholar
  13. 13.
    Lim, J.-T., Shim, K.H.: Performance analysis and design of token-passing networks with two message priorities. IEE Proc. Communications 44, 11–16 (1997)Google Scholar
  14. 14.
    Lim, J.-T., Shim, K.H.: Extreme-point robust stability of a class of discrete-time polynomials. Electonics Letters 32, 1421–1422 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Heejung Byun
    • 1
  • Jungmin So
    • 2
  1. 1.Dept. of Information and Telecommunication EngineeringSuwon UniversityHwaseong-siKorea
  2. 2.Dept. of Computer EngineeringHallym UniversityChuncheonKorea

Personalised recommendations