Privacy Threat Analysis of Social Network Data

  • Mohd Izuan Hafez Ninggal
  • Jemal Abawajy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7017)


Social network data has been increasingly made publicly available and analyzed in a wide spectrum of application domains. The practice of publishing social network data has brought privacy concerns to the front. Serious concerns on privacy protection in social networks have been raised in recent years. Realization of the promise of social networks data requires addressing these concerns. This paper considers the privacy disclosure in social network data publishing. In this paper, we present a systematic analysis of the various risks to privacy in publishing of social network data. We identify various attacks that can be used to reveal private information from social network data. This information is useful for developing practical countermeasures against the privacy attacks.


Privacy disclosure Social networks Threat analysis Data publications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexa. The top 500 sites on the web (2011),
  2. 2.
    Bonneau, J., Preibusch, S.: The privacy jungle: On the market for data protection in social networks. Economics of Information Security and Privacy, 121–167 (2010)Google Scholar
  3. 3.
    Zhou, B., Pei, J., Luk, W.: A brief survey on anonymization techniques for privacy preserving publishing of social network data. ACM SIGKDD Explorations Newsletter 10(2), 12–22 (2008)CrossRefGoogle Scholar
  4. 4.
    Kleinberg, J.M.: Challenges in mining social network data: processes, privacy, and paradoxes. ACM, New York (2007)CrossRefGoogle Scholar
  5. 5.
    Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou r3579x?: anonymized social networks, hidden patterns, and structural steganography. ACM, New York (2007)CrossRefGoogle Scholar
  6. 6.
    Srivastava, J., et al.: Data mining based social network analysis from online behavior (2008)Google Scholar
  7. 7.
    Fung, B., et al.: Privacy-preserving data publishing: A survey of recent developments. ACM Computing Surveys (CSUR) 42(4), 1–53 (2010)CrossRefGoogle Scholar
  8. 8.
    Rosenblum, D.: What anyone can know: The privacy risks of social networking sites. IEEE Security & Privacy, 40–49 (2007) Google Scholar
  9. 9.
    Facebook. Facebook Statistic (2011),
  10. 10.
    Kaplan, A.M., Haenlein, M.: Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons 53(1), 59–68 (2010)CrossRefGoogle Scholar
  11. 11.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  12. 12.
    Watts, D.J.: Networks, dynamics, and the small-world phenomenon. American Journal of Sociology, 493–527 (1999)Google Scholar
  13. 13.
    Narayanan, A., Shmatikov, V.: De-anonymizing social networks. IEEE, Los Alamitos (2009)CrossRefGoogle Scholar
  14. 14.
    Felt, A., Evans, D.: Privacy protection for social networking APIs. In: 2008 Web 2.0 Security and Privacy, W2SP 2008 (2008)Google Scholar
  15. 15.
    Westin, A.F.: Privacy and freedom, London, vol. 97 (1967) Google Scholar
  16. 16.
    Hansell, S.: AOL removes search data on vast group of web users. New York Times 8, C4 (2006)Google Scholar
  17. 17.
    Gross, R., Acquisti, A.: Information revelation and privacy in online social networks. ACM, New York (2005)CrossRefGoogle Scholar
  18. 18.
    Williams, J.: Social networking applications in health care: threats to the privacy and security of health information. ACM, New York (2010)CrossRefGoogle Scholar
  19. 19.
    Hay, M., et al.: Resisting structural re-identification in anonymized social networks. Proceedings of the VLDB Endowment 1(1), 102–114 (2008)CrossRefGoogle Scholar
  20. 20.
    Liu, K., et al.: Privacy-preserving data analysis on graphs and social networks. Next Generation of Data Mining, 419–437 (2008) Google Scholar
  21. 21.
    Zheleva, E., Getoor, L.: Preserving the privacy of sensitive relationships in graph data. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mohd Izuan Hafez Ninggal
    • 1
  • Jemal Abawajy
    • 1
  1. 1.School of Information TechnologyDeakin UniversityAustralia

Personalised recommendations