Skip to main content

Equivalent Stiffness and Compliance of Curvilinear Elastic Fibers

  • Chapter

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 61))

Abstract

In this paper the mechanical response of curvilinear, anisotropic and inhomogeneous elastic fibers is addressed. A general model accounting for fiber three-dimensional geometry, as well as for shear and torsional effects together with the extensional ones is rationally deduced from the three-dimensional elasticity by means of a constrained approach. Closed-form relationships describing chord-referred equivalent tangent stiffnesses and compliances are obtained, generalizing a number of classical results when non-conventional effects are included. Proposed numerical applications highlight the influence of fiber geometric parameters and shear deformability, enabling also to put in evidence some limits of usually-employed assumptions. Finally, the fiber mechanical response in a large-displacement regime is modelled through an incremental formulation. In this context, explicit relationships for tangent and secant equivalent along-the-chord elastic moduli are deduced in the case of planar fibers, leading to powerful and direct relationships, useful for the analysis and the design of advanced composite materials reinforced by curvilinear elastic fibers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hyer, M.W., Charette, R.F.: Use of curvilinear fiber format in composite structure design. AIAA J. 29(6), 1011–1015 (1991)

    Article  Google Scholar 

  2. Gürdal, Z., Olmedo, R.: In-plane response of laminates with spatially varying fiber orientations: variable stiffness concept. AIAA J. 31(4), 751–758 (1993)

    Article  MATH  Google Scholar 

  3. Duvaut, G., Terrel, G., Lènè, F., Verijenko, V.E.: Optimization of fiber reinforced composites. Composite Structures 48, 83–89 (2000)

    Article  Google Scholar 

  4. Camanho, P.P.: Advanced lightweigth structures based on non-conventional composite laminates. In: Ambrosio, J., Silva, M.T. (eds.) Proc. 7th EUROMECH Solid Mechanics Conference, Lisbon (2009)

    Google Scholar 

  5. Comninou, M., Yannas, L.V.: Dependence of stress-strain nonlinearity of connective tissues on the geometry of collagen fibers. J. Biomech. 9, 427–433 (1976)

    Article  Google Scholar 

  6. Maceri, F., Marino, M., Vairo, G.: A unified multiscale mechanical model for soft collagenous tissues with regular fiber arrangement. J. Biomench. 43(2), 355–363 (2010)

    Article  Google Scholar 

  7. Maceri, F., Marino, M., Vairo, G.: An insight on multiscale tendon modeling in muscle-tendon integrated behavior. Biomech. Model Mechanobiol. (to appear, 2011)

    Google Scholar 

  8. Marino, M., Vairo, G.: Stress and strain localization in stretched collagenous tissues. Comput. Meth. Biomech. Biomed. Eng. (to appear, 2011)

    Google Scholar 

  9. Frish-Fay, R.: Flexible Bars. Butterworths, London (1962)

    Google Scholar 

  10. Basu, A.J., Lardner, T.J.: Deformation of a planar sinusoidal elastic beam. Z. Angew. Math. Phys. 36, 461–474 (1985)

    Article  Google Scholar 

  11. Cartraud, P., Messager, T.: Computational homogenization of periodic beam-like structures. Int. J. Solid Struct. 43, 686–696 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Haussy, B., Jung, C., Ganghoffer, J.F.: Homogenisation of the undulations of a single yarn. Applications to the modelling of the traction. Int. J. Mech. Sci. 46, 961–979 (2004)

    MATH  Google Scholar 

  13. Kolpakov, A.G.: The governing equations of a thin elastic stressed beam with a periodic structure. J. Appl. Math. Mech. 63, 495–594 (1999)

    Article  MathSciNet  Google Scholar 

  14. Messager, T., Cartraud, P.: Homogenization of helical beam-like structures: application to single-walled carbon nanotubes. Comput. Mech. 41, 335–346 (2008)

    Article  MATH  Google Scholar 

  15. Potier-Ferry, M., Siad, L.: Homogenénéisation géometrique d’une poutre ondulée (Geometrical homogenization of a corrugated beam). C. R. Acad. Sci. Mechanique 314, 425–430 (1992)

    MATH  Google Scholar 

  16. Maceri, F., Bisegna, P.: Modellazione strutturale. In: Giangreco, E. (ed.) Ingegneria Delle Strutture, Utet, Torino, vol. II, pp. 1–90 (2002) (in Italian)

    Google Scholar 

  17. Maceri, F., Vairo, G.: Anisotropic thin-walled beam models: A rational deduction from three-dimensional elasticity. J. Mech. Mater. Struct. 4(2), 371–394 (2009)

    Article  Google Scholar 

  18. Kellogg, O.D.: Foundations of potential theory. Springer, Berlin (1929)

    Google Scholar 

  19. Guggenheimer, H.W.: Differential geometry. Dover Publications, New York (1977)

    MATH  Google Scholar 

  20. Ding, X., Selig, J.M.: On the compliance of coiled springs. Int. J. Mech. Sci. 46, 703–727 (2004)

    Article  MATH  Google Scholar 

  21. Vairo, G.: A closed-form refined model of the cables’ nonlinear response in cable-stayed structures. Mech. Adv. Mater Struct. 16, 456–466 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marino, M., Vairo, G. (2012). Equivalent Stiffness and Compliance of Curvilinear Elastic Fibers. In: Frémond, M., Maceri, F. (eds) Mechanics, Models and Methods in Civil Engineering. Lecture Notes in Applied and Computational Mechanics, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24638-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24638-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24637-1

  • Online ISBN: 978-3-642-24638-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics