Skip to main content

A Generalization of the Endochronic Theory of Plasticity Based on the Introduction of Several Intrinsic Times

  • Chapter
Mechanics, Models and Methods in Civil Engineering

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 61))

  • 1853 Accesses

Abstract

In this note, a generalization of the endochronic theory of plasticity is proposed. The basic idea is the introduction of several distinct intrinsic times instead of the unique one characterizing the standard theory. It follows that endochronic models without elastic domain and multi-layer plasticity models, presenting multi-linear hysteresis loops, can be described by means of a common theoretical framework. Moreover, a new model can be defined, able to produce, for uniaxial loading, closed hysteresis loops for small amplitudes and open loops for larger amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Valanis, K.C.: A theory of viscoplasticity without a yield surface. Part I: general theory. Arch. Mech. 23(4), 517–533 (1971)

    MathSciNet  MATH  Google Scholar 

  2. Valanis, K.C.: On the foundations of the endochronic theory of plasticity. Arch. Mech. 27, 857 (1976)

    MathSciNet  Google Scholar 

  3. Bouc, R.: Forced vibrations of a mechanical system with hysteresis. In: Proc. 4th Conf. Nonlinear Oscillations, Prague(1967)

    Google Scholar 

  4. Bouc, R.: Modèle mathématiques d’hystérésis. Acustica 24, 16–25 (1971) (in French)

    MATH  Google Scholar 

  5. Volterra, V.: Sur la théorie mathématique des phénomènes héréditaires. J. Math. Pure. Appl. 7, 249 (1928) (in French)

    Google Scholar 

  6. Baber, T.T., Wen, Y.K.: Random vibrations of hysteretic, degrading systems. J. Eng. Mech. Div. ASCE 107(6), 1069–1087 (1981)

    Google Scholar 

  7. Casciati, F.: Stochastic dynamics of hysteretic media. Struct. Safety 6, 259–269 (1989)

    Article  Google Scholar 

  8. Karray, M.A., Bouc, R.: Etude dynamique d’un système d’isolation antisismique. Ann. ENIT 3(1), 43–60 (1989) (in French)

    Google Scholar 

  9. Wen, Y.K.: Method for random vibration of hysteretic systems. J. Eng. Mech. Div. ASCE 102, 249–263 (1976)

    Google Scholar 

  10. Erlicher, S., Point, N.: Thermodynamic admissibility of Bouc-Wen type models. C. R. Acad. Sci. Mechanique 332(1), 51–57 (2004)

    MATH  Google Scholar 

  11. Sivaselvan, M.V., Reinhorm, A.M.: Hysteretic models for deteriorating inelastic structures. J. Eng. Mech. 126(6), 633–640 (2000)

    Article  Google Scholar 

  12. Bazant, Z.P.: Endochronic inelasticity and incremental plasticity. Int. J. Solid. Struct. 14, 691–714 (1978)

    Article  MATH  Google Scholar 

  13. Valanis, K.C.: Fundamental consequences of a new intrinsic time measure: plasticity as the limit of the endochronic theory. Arch. Mech. 32, 517–533 (1980)

    MathSciNet  Google Scholar 

  14. Watanabe, O., Atluri, S.N.: Internal time, general internal variable, and multi-yield-surface theories of plasticity and creep: A unification of concepts. Int. J. Plast. 2, 37–57 (1986)

    Article  MATH  Google Scholar 

  15. Armstrong, P.J., Frederick, C.O.: A mathematical representation of the multiaxial Bauschinger effect. GEGB Report RD/B/N 731 (1966)

    Google Scholar 

  16. Chaboche, J.L., Dang-Van, K., Cordier, G.: Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel. L11/3, Trans SMIRT-5, Berlin (1979)

    Google Scholar 

  17. Chiang, D.Y., Beck, J.L.: A new class of distributed-element models for cyclic plasticity. Int. J. Solid Struct. 31(4), 469–484 (1994)

    Article  MATH  Google Scholar 

  18. Iwan, W.D.: A distributed element model for hyteresis and its steady-state dynamic response. J. Appl. Mech. ASME 33(4), 893–900 (1966)

    Article  Google Scholar 

  19. Besseling, J.F.: A theory of elastic, plastic and creep deformation of an initially isotropic material showing anisotropic strain hardening, creep recovery and secondary creep. J. Appl. Mech. ASME 25, 529 (1958)

    MATH  Google Scholar 

  20. Schwartz, L.: Méthodes mathématiques pour les sciences physiques. Herrmann, Paris (1965) (in French)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Point, N., Erlicher, S. (2012). A Generalization of the Endochronic Theory of Plasticity Based on the Introduction of Several Intrinsic Times. In: Frémond, M., Maceri, F. (eds) Mechanics, Models and Methods in Civil Engineering. Lecture Notes in Applied and Computational Mechanics, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24638-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24638-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24637-1

  • Online ISBN: 978-3-642-24638-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics