Skip to main content

Towards Optimal Bounds on the Recoverable Strains in Polycrystalline Shape Memory Alloys

  • Chapter
  • 1827 Accesses

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 61))

Abstract

The set of recoverable (or stress-free) strains plays a central role in the peculiar properties of shape memory alloys. New upper bounds are presented for estimating the recoverable strains of polycrystalline shape memory alloys, in the finite strains setting. Those bounds take the texture of the polycrystal (i.e., the shapes, distribution and orientations of the grains) into account. A reference two-orientation problem is studied for investigating the optimality of the bounds proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhattacharya, K.: Microstructure of martensite. Oxford Univ. Press, Oxford (2003)

    MATH  Google Scholar 

  2. Bhattacharya, K., Kohn, R.: Energy minimization recoverable strains polycrystalline shape memory alloys. Arch. Rat. Mech. Analysis 139(2), 99–180 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Shu, Y., Bhattacharya, K.: The influence of texture on the shape memory effect in polycrystals. Acta. Mater. 46, 5457–5473 (1998)

    Article  Google Scholar 

  4. Peigney, M.: Recoverable strains in composite shape-memory alloys. J. Mech. Phys. Solid 56, 360–375 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Milton, G., Serkov, S.: Bounding the current in nonlinear conducting composites. J. Mech. Phys. Solid 48, 1295–1324 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Talbot, D.R.S., Willis, J.R.: Bounds for the effective constitutive relation of a nonlinear composite. Proc. Math. Roy. Soc. 460, 2705–2723 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Peigney, M.: A pattern-based method for bounding the effective response of a nonlinear composite. J. Mech. Phys. Solid 53, 923–948 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dacorogna, B.: Direct methods in the calculus of variations. Springer, Berlin (1989)

    MATH  Google Scholar 

  9. Ball, J.M., James, R.D.: Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. Roy. Soc. London A 338, 338–450 (1992)

    Google Scholar 

  10. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Analysis 100, 13–52 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Milton, G.: The theory of composites. Cambridge Univ. Press, New York (2002)

    Book  MATH  Google Scholar 

  12. Peigney, M.: A non-convex lower bound on the effective energy of polycrystalline shape-memory alloys. J. Mech. Phys. Solid 57, 970–986 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peigney, M. (2012). Towards Optimal Bounds on the Recoverable Strains in Polycrystalline Shape Memory Alloys. In: Frémond, M., Maceri, F. (eds) Mechanics, Models and Methods in Civil Engineering. Lecture Notes in Applied and Computational Mechanics, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24638-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24638-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24637-1

  • Online ISBN: 978-3-642-24638-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics