Kinetic Theory for Response and Transport in Non-centrosymmetric Superconductors

  • Ludwig KlamEmail author
  • Dirk Manske
  • Dietrich Einzel
Part of the Lecture Notes in Physics book series (LNP, volume 847)


We formulate a kinetic theory for non-centrosymmetric superconductors at low temperatures in the clean limit. The transport equations are solved quite generally in spin- and particle-hole (Nambu) space by performing first a transformation into the band basis and second a Bogoliubov transformation to the quasiparticle-quasihole phase space. Our result is a particle-hole-symmetric, gauge-invariant and charge conserving description, which is valid in the whole quasiclassical regime (\(|{\user2{q}}|\ll k_F\;\hbox{and}\;\hbar \omega \ll E_{\rm F}\)). We calculate the current response, the specific heat capacity, and the Raman response function. For the Raman case, we investigate within this framework the polarization dependence of the electronic (pair-breaking) Raman response for the recently discovered non-centrosymmetric superconductors at zero temperature. Possible applications include the systems CePt\(_3\)Si and Li\(_2\)Pd\(_x\)Pt\(_{3-x}\)B, which reflect the two important classes of the involved spin-orbit coupling. We provide analytical expressions for the Raman vertices for these two classes and calculate the polarization dependence of the electronic spectra. We predict a two-peak structure and different power laws with respect to the unknown relative magnitude of the singlet and triplet contributions to the superconducting order parameter, revealing a large variety of characteristic fingerprints of the underlying condensate.


Specific Heat Capacity Vertex Function Bogoliubov Transformation Superfluid Density Band Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank M. Sigrist for helpful discussions.


  1. 1.
    Badica, P., Kondo, T., Togano, K. (2005) J. Phys. Soc. Jpn. 74:1014ADSCrossRefGoogle Scholar
  2. 2.
    Bauer, E., Bonalde, I., Sigrist, M. (2005) Low Temp. Phys. 31:748ADSCrossRefGoogle Scholar
  3. 3.
    Bauer, E., Hilscher, G., Michor, H., Paul, C., Scheidt, E. W., Gribanov, A., Seropegin Yu., Noël, H., Sigrist, M., Rogl, P. (2004) Phys. Rev. Lett. 92:027003ADSCrossRefGoogle Scholar
  4. 4.
    Betbeder-Matibet, O., Nozières, P. (1969) Ann. Phys. 51:392ADSCrossRefGoogle Scholar
  5. 5.
    Devereaux, T. P., Einzel, D. (1995) Phys. Rev. B 51:16336ADSCrossRefGoogle Scholar
  6. 6.
    Devereaux, T. P., Einzel, D. (1996) Phys. Rev. B 54:15547ADSCrossRefGoogle Scholar
  7. 7.
    Dresselhaus, G. (1955) Phys. Rev. 100:580ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Edelstein, V. M. (1989) Zh. Eksp. Teor. Fiz. 95:2151Google Scholar
  9. 9.
    Einzel, D. (2003) J. Low Temp. Phys. 131:1Google Scholar
  10. 10.
    Einzel, D., Klam, L. (2008) J. Low Temp. Phys. 150:57Google Scholar
  11. 11.
    Fak, B., Raymond, S., Braithwaite, D., Lapertot, G., Mignot, J.-M. (2008) Phys. Rev. B 78:184518ADSCrossRefGoogle Scholar
  12. 12.
    Frigeri, P. A., Agterberg, D. F., Koga, A., Sigrist, M. (2004) Phys. Rev. Lett. 92:097001ADSCrossRefGoogle Scholar
  13. 13.
    Frigeri, P. A., Agterberg, D. F., Milat, I., Sigrist, M. (2006) Eur. Phys. J. B 54:435ADSCrossRefGoogle Scholar
  14. 14.
    Frigeri, P. A., Agterberg, D. F., Sigrist, M. (2004) New J. Phys. 6:115ADSCrossRefGoogle Scholar
  15. 15.
    Gor’kov, L. P., Rashba, E. I. (2001) Phys. Rev. Lett. 87:037004ADSCrossRefGoogle Scholar
  16. 16.
    Hirschfeld, P. J., Wölfle, P., Sauls, J. A., Einzel, D., Putikka, W. O. (1989) Phys. Rev. B 40:6695ADSCrossRefGoogle Scholar
  17. 17.
    Kee, H.-Y., Maki, K., Chung, C. H. (2003) Phys. Rev. B, 67:180504ADSCrossRefGoogle Scholar
  18. 18.
    Klam, L., Einzel, D., Manske, D. (2009) Phys. Rev. Lett. 102:027004ADSCrossRefGoogle Scholar
  19. 19.
    Klein, M. V., Dierker, S. B. (1984) Phys. Rev. B 29:4976ADSCrossRefGoogle Scholar
  20. 20.
    Lee, K.-W., Pickett, W. E. (2005) Phys. Rev. B 72:174505ADSCrossRefGoogle Scholar
  21. 21.
    Leggett, A. J. (1975) Rev. Mod. Phys. 47:331ADSCrossRefGoogle Scholar
  22. 22.
    Mermin, N. D. (1970) Phys. Rev. B 1:2362ADSCrossRefGoogle Scholar
  23. 23.
    Monien, H., Zawadowski, A. (1990) Phys. Rev. B 41:8798ADSCrossRefGoogle Scholar
  24. 24.
    Pines, D., Nozières, P., Benjamin, W. A. (1966) New YorkGoogle Scholar
  25. 25.
    Samokhin, K. V. (2007) Phys. Rev. B 76:094516MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Samokhin, K. V., Mineev, V. P. (2008) Phys. Rev. B 77:104520ADSCrossRefGoogle Scholar
  27. 27.
    Tsuneto, T. (1960) Phys. Rev. 118:1029ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Vorontsov, A. B., Vekhter, I., Eschrig M. (2008) Phys. Rev. Lett. 101:127003ADSCrossRefGoogle Scholar
  29. 29.
    Wölfle, P. (1976) J. Low Temp. Phys. 22:157ADSCrossRefGoogle Scholar
  30. 30.
    Yuan, H. Q., Agterberg, D. F., Hayashi, N., Badica, P., Vandervelde, D., Togano, K., Sigrist, M., Salamon, M. B. (2006) Phys. Rev. Lett. 97:017006 and references therein.Google Scholar
  31. 31.
    Yuan, H.~Q., Vandervelde, D., Salamon, M. B., Badica, P., Togano, K. arXiv:cond-mat/0506771 (2005).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Max-Planck-Institut für FestkörperforschungStuttgartGermany
  2. 2.D. EinzelWalther-Meissner-Institut,Bayerische Akademie der WissenschaftenGarchingGermany

Personalised recommendations