Magnetoelectric Effects, Helical Phases, and FFLO Phases

  • D. F. AgterbergEmail author
Part of the Lecture Notes in Physics book series (LNP, volume 847)


This chapter emphasizes new magnetic properties that arise when inversion symmetry is broken in a superconductor. There are two aspects that will be covered in detail. The first topic encompasses physics related to superconducting magnetoelectric effects that arise from broken inversion symmetry. Broken inversion symmetry allow for Lifshitz invariants in the free energy which can be viewed as a coupling between the magnetic induction and the supercurrent. There are similarities between these invariants and the better known Dzyaloshinskii-Moyira interaction in magnetic systems. These Lifshitz invariants give rise to anomalous magnetic properties as well as new phases in the presence of magnetic fields. Here, we will describe the consequences of these Lifshitz invariants, provide estimates for the relative magnitudes of the novel effects, and discuss the important role that crystal symmetry plays in understanding this physics. Finally, we provide a discussion of the fate of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases in broken inversion superconductors. In particular, we show how broken inversion symmetry can have a profound effect on the stability, existence, and properties of FFLO phases.


Fermi Surface Topological Insulator Magnetoelectric Effect Superconducting Order Parameter Josephson Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to thank S. Fujimoto, K. Samokhin, and M. Sigrist for useful discussions. This work was supported by NSF grant DMR-0906655.


  1. 1.
    Fulde, P., Ferrell, A.: Phys. Rev. 135, A550 (1964)ADSCrossRefGoogle Scholar
  2. 2.
    Larkin, A.I., Ovchinnikov, Yu.N.: Sov. Phys. JETP 20, 762 (1965).Google Scholar
  3. 3.
    Mineev V.P., Samokhin K.V.: Zh. Eksp. Teor. Fiz. 105, 747 (1994) [Sov. Phys. JETP 78, 401 (1994)].Google Scholar
  4. 4.
    Edel’stein, V.M.: J. Phys.: Condens. Matter 8, 339 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Yip, S.K.: Phys. Rev. B 65, 144508 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Agterberg, D.F.: Physica C 387, 13 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Kaur, R.P., Agterberg, D.F., Sigrist, M.: Phys. Rev. Lett. 94, 137002 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Mineev, V.P., Samokhin, K.V.: Phys. Rev. B 78, 144503 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Levitov, L.S., Nazarov, Yu.V., Eliashberg, G.M.: Pis’ma Zh. Eksp. Teor. Fiz. 41, 365 (1985) [JETP Letters 41, 445 (1985) ].Google Scholar
  10. 10.
    Edel’stein, V.M.: Phys. Rev. Lett. 75, 2004 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    Fujimoto, S.: Phys. Rev B 72, 024515 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Lu, C.K., Yip, S.: Phys. Rev. B 77, 054515 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Lu, C.K., Yip, S.: J. Low Temp. Phys. 155, 160 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Dimitrova, O.V., Feigel’man, M.V.: Pis’ma v ZhETF 78, 1132 (2003).Google Scholar
  15. 15.
    Dimitrova, O., Feigel’man, M.V.: Phys. Rev. B 76, 014522 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Agterberg, D.F., Kaur, R.P.: Phys. Rev. B 75, 064511 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Oka, M., Ishioka, M., Machida, K.: Phys. Rev B 73, 214509 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Yip, S.: J. Low. Temp. Phys 140, 67 (2005).Google Scholar
  19. 19.
    Yip S. arXiv:0502477v2.Google Scholar
  20. 20.
    Togano, K., Badica, P., Nakamori, Y., Orimo, S., Takeya, H., Hirata, K.: Phys. Rev. Lett. 93, 247004 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Badica, P., Kondo, T., Togano, K.: J. Phys. Soc. Jpn. 74, 1014 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Yuan, H.Q., Agterberg, D.F., Hayashi, N., Badica, P., Vandervelde, D., Togano, K., Sigrist, M., Salamon, M.B.: Phys. Rev. Lett. 97, 017006 (2006).Google Scholar
  23. 23.
    Bauer, E., Hilscher, G., Michor, H., Paul, Ch., Scheidt, E.W., Gribanov, A., Seropegin, Yu., Noël, H., Sigrist, M., Rogl, P.: Phys. Rev. Lett. 92, 027003 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Matsunaga, Y., Hiasa, N., Ikeda, R.: Phys. Rev. B 78, 220508 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Hiasa, N., Ikeda, R.: Phys. Rev. B 78, 224514 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Hiasa, N., Saiki, T., Ikeda, R.: Phys. Rev. B 80, 014501 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Sigrist, M., Ueda, K.: Rev. Mod. Phys. 63, 239 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    Mineev, V. P., Samokhin, K. V.: Introduction to unconventional superconductivity. Gordon and Breach, London (1999)Google Scholar
  29. 29.
    Santos, L., Neuport, T., Chamon, C., Murdy, C.: Phys. Rev. B 81, 184502 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Barzykin, V., Gor’kov, L. P.: Phys. Rev. Lett. 89, 227002 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    Samokhin, K. V.: Phys. Rev. B 78, 224520 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Agterberg, D.F., Zheng, Z., Mukherjee, S.: Phys. Rev. Lett. 100, 017001 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations