Skip to main content

Affective Modeling from Multichannel Physiology: Analysis of Day Differences

  • Conference paper
Affective Computing and Intelligent Interaction (ACII 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6974))

Abstract

Physiological signals are widely considered to contain affective information. Consequently, pattern recognition techniques such as classification are commonly used to detect affective states from physiological data. Previous studies have achieved some success in detecting affect from physiological measures, especially in controlled environments where emotions are experimentally induced. One challenge that arises is that physiological measures are expected to exhibit considerable day variations due to a number of extraneous factors such as environmental changes and sensor placements. These variations pose challenges to effectively classify affective sates from future physiological data; this is a common problem for real world requirements. The present study provides a quantitative analysis of day variations of physiological signals from different subjects. We propose a classifier ensemble approach using a Winnow algorithm to address the problem of day-variation in physiological signals. Our results show that the Winnow ensemble approach outperformed a static classification approach for detecting affective states from physiological signals that exhibited day variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calvo, R.A., D’Mello, S.: Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications. IEEE Transactions on Affective Computing 1, 18–37 (2010)

    Article  Google Scholar 

  2. Wagner, J., Kim, J., Andre, E.: From Physiological Signals to Emotions: Implementing and Comparing Selected Methods for Feature Extraction and Classification. In: IEEE International Conference on Multimedia and Expo, ICME 2005, pp. 940–943 (2005)

    Google Scholar 

  3. Whang, M., Lim, J.: A Physiological Approach to Affective Computing. In: Affective Computing: Focus on Emotion Expression, Synthesis, and Recognition, pp. 310–318. I-Tech Education and Publishing, Vienna (2008)

    Google Scholar 

  4. Haag, A., Goronzy, S., Schaich, P., Williams, J.: Emotion Recognition Using Bio-sensors: First Steps towards an Automatic System. In: André, E., Dybkjær, L., Minker, W., Heisterkamp, P. (eds.) ADS 2004. LNCS (LNAI), vol. 3068, pp. 36–48. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Kim, J., Andre, E.: Emotion Recognition Based on Physiological Changes in Music Listening. IEEE Trans. Pattern Anal. Mach. Intell. 30, 2067–2083 (2008)

    Article  Google Scholar 

  6. Picard, R.W., Vyzas, E., Healey, J.: Toward Machine Emotional Intelligence: Analysis of Affective Physiological State. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1175–1191 (2001)

    Article  Google Scholar 

  7. Kim, K., Bang, S., Kim, S.: Emotion recognition system using short-term monitoring of physiological signals. Medical and Biological Engineering and Computing 42, 419–427 (2004)

    Article  Google Scholar 

  8. Lichtenstein, A., Oehme, A., Kupschick, S., JĂ¼rgensohn, T.: Comparing Two Emotion Models for Deriving Affective States from Physiological Data. In: Peter, C., Beale, R. (eds.) Affect and Emotion in Human-Computer Interaction. LNCS, vol. 4868, pp. 35–50. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Plarre, K., Raij, A., Hossain, M., Ali, A., Nakajima, M., Al’Absi, M., Ertin, E., Kamarck, T., Kumar, S., Scott, M., Siewiorek, D., Smailagic, A., Wittmers, L.: Continuous Inference of Psychological Stress from Sensory Measurements Collected in the Natural Environment. In: Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Chicago, IL (April 12-14, 2011)

    Google Scholar 

  10. Popivanov, D., Mineva, A.: Testing procedures for non-stationarity and non-linearity in physiological signals. Mathematical Biosciences 157, 303–320 (1999)

    Article  Google Scholar 

  11. Last, M.: Online classification of nonstationary data streams. Intell. Data Anal. 6, 129–147 (2002)

    MATH  Google Scholar 

  12. Kuncheva, L.I.: Classifier Ensembles for Changing Environments. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 1–15. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Sinha, A., Chen, H., Danu, D.G., Kirubarajan, T., Farooq, M.: Estimation and decision fusion: A survey. Neurocomputing 71, 2650–2656 (2008)

    Article  Google Scholar 

  14. Oza, N.C., Tumer, K.: Classifier ensembles: Select real-world applications. Information Fusion 9, 4–20 (2008)

    Article  Google Scholar 

  15. Muhlbaier, M., Polikar, R.: An Ensemble Approach for Incremental Learning in Nonstationary Environments. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 490–500. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Lang, P.J., Bradley, M.M., Cuthbert, B.N.: International affective picture system (IAPS): Technical manual and affective ratings. The Center for Research in Psychophysiology, University of Florida, Gainesville, FL (1995)

    Google Scholar 

  17. Andreassi, J.L.: Psychophysiology: Human behavior and physiological response. Lawrence Erlbaum Associates Publishers, New Jersey (2007)

    Google Scholar 

  18. Kreibig, S.D.: Autonomic nervous system activity in emotion: A review. Biological Psychology 84, 394–421 (2010)

    Article  Google Scholar 

  19. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  20. Heijden, F.v.d., Duin, R.P., Ridder, D.d., Tax, D.M.: Classification, parameter estimation and state estimation - an engineering approach using Matlab. John Wiley & Sons, Chichester (2004)

    Book  MATH  Google Scholar 

  21. Jain, A.K., Duin, R.P.W., Jianchang, M.: Statistical pattern recognition: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 4–37 (2000)

    Article  Google Scholar 

  22. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31, 264–323 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alzoubi, O., Hussain, M.S., D’Mello, S., Calvo, R.A. (2011). Affective Modeling from Multichannel Physiology: Analysis of Day Differences. In: D’Mello, S., Graesser, A., Schuller, B., Martin, JC. (eds) Affective Computing and Intelligent Interaction. ACII 2011. Lecture Notes in Computer Science, vol 6974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24600-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24600-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24599-2

  • Online ISBN: 978-3-642-24600-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics