A Succinct Index for Hypertext

  • Chris Thachuk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7024)


Recent advances in nucleic acid sequencing technology has motivated research into succinct text indexes to represent reference genomes that support efficient pattern matching queries. Similar sequencing technology can also produce millions of reads (patterns) derived from transcripts which need to be aligned to a reference transcriptome. A transcriptome can be modeled as a hypertext. Motivated by this application, we propose the first succinct index for hypertext. The index can model any hypertext and places no restriction on the graph topology. We also propose a new pattern matching algorithm, capable of aligning a pattern to any path in the hypertext, that is especially efficient when few nodes of the hypertext share the same text—in this important case, our algorithm is a significant improvement over all existing approaches.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akutsu, T.: A Linear Time Pattern Matching Algorithm Between a String and a Tree. In: Apostolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) CPM 1993. LNCS, vol. 684, pp. 1–10. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  2. 2.
    Amir, A., Lewenstein, M., Lewenstein, N.: Pattern matching in hypertext. Journal of Algorithms 35(1), 82–99 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barbay, J., Claude, F., Navarro, G.: Compact rich-functional binary relation representations. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 170–183. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct orthogonal range search structures on a grid with applications to text indexing. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 98–109. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Claude, F., Navarro, G.: Self-indexed text compression using straight-line programs. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 235–246. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Farzan, A., Munro, J.: Succinct representations of arbitrary graphs. In: 16th Annual European Symposium on Algorithms, pp. 393–404 (2008)Google Scholar
  7. 7.
    Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In: Symposium on Foundations of Computer Science, pp. 390–398 (2002)Google Scholar
  8. 8.
    Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 841–850 (2003)Google Scholar
  9. 9.
    Horner, D., Pavesi, G., Castrignano, T., De Meo, P., Liuni, S., Sammeth, M., Picardi, E., Pesole, G.: Bioinformatics approaches for genomics and post genomics applications of next-generation sequencing. Briefings in Bioinformatics (2009)Google Scholar
  10. 10.
    Jay, S., Ji, H.: Next-generation DNA sequencing. Nature Biotechnology 26(10), 1135–1145 (2008)CrossRefGoogle Scholar
  11. 11.
    Lam, T.-W., Sung, W.-K., Tam, S.-L., Yiu, S.-M.: Space efficient indexes for string matching with don’t cares. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 846–857. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Manber, U., Wu, S.: Approximate String Matching With Arbitrary Costs for Text and Hypertext. In: IAPR International Workshop on Structural and Syntactic Pattern Recognition, pp. 22–33 (1992)Google Scholar
  13. 13.
    Mortazavi, A., Williams, B., McCue, K., Schaeffer, L., Wold, B.: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5(7), 621–628 (2008)CrossRefGoogle Scholar
  14. 14.
    Navarro, G.: Improved approximate pattern matching on hypertext. Theoretical Computer Science 237(1-2), 455–463 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys 39(1), 2 (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Park, K., Kim, D.: String Matching in Hypertext. In: Symposium on Combinatorial pattern matching, p. 318 (1995)Google Scholar
  17. 17.
    Tam, A., Wu, E., Lam, T.-W., Yiu, S.-M.: Succinct text indexing with wildcards. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 39–50. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Thachuk, C.: Succincter text indexing with wildcards. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 27–40. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chris Thachuk
    • 1
  1. 1.Department of Computer ScienceUniversity of British ColumbiaVancouverCanada

Personalised recommendations