Skip to main content

Introduction

  • Chapter
  • First Online:
3+1 Formalism in General Relativity

Part of the book series: Lecture Notes in Physics ((LNP,volume 846))

Abstract

The 3+1 formalism is an approach to general relativity that relies on the slicing of the four-dimensional spacetime by three-dimensional surfaces (hypersurfaces). These hypersurfaces have to be spacelike, so that the metric induced on them by the Lorentzian spacetime metric [signature \((-,+,+,+)\)] is Riemannian [signature \((+,+,+)\)]. From the mathematical point of view, this procedure allows to formulate the problem of resolution of Einstein equations as a Cauchy problem with constraints. From the pedestrian point of view, it amounts to a decomposition of spacetime into “space” + “time”, so that one manipulates only time-varying tensor fields in some “ordinary” three-dimensional space, where the scalar product is Riemannian. One should stress that this space + time splitting is not some a priori structure of general relativity but relies on the somewhat arbitrary choice of a time coordinate. The 3 + 1 formalism should not be confused with the 1+3 formalism (cf. e.g. Ref. [1]), where the basic structure is a congruence of one-dimensional curves (mostly timelike curves, i.e. worldlines), instead of a family of three-dimensional surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These three persons have some direct affiliation: Georges Darmois was the thesis adviser of André Lichnerowicz, who was himself the thesis adviser of Yvonne Choquet-Bruhat.

References

  1. Ellis, G.F.R., van Elst, H.: Cosmological models. In: Lachièze-Rey, M. (ed.) Theoretical and Observational Cosmology: Proceedings of the NATO Advanced Study Institute on Theoretical and Observational Cosmology, p. 1. Kluwer Academic, Boston (1999)

    Google Scholar 

  2. Darmois, G.: Les équations de la gravitation einsteinienne, Mémorial des Sciences Mathématiques 25. Gauthier-Villars, Paris (1927)

    Google Scholar 

  3. Lichnerowicz, A.: Sur certains problèmes globaux relatifs au système des équations d’Einstein. Hermann, Paris (1939). http://www.numdam.org/item?id=THESE_1939_226_1_0

  4. Lichnerowicz, A.: L’intégration des équations de la gravitation relativiste et le problème des n corps, J. Math. Pures Appl. 23, 37 (1944); reprinted in Lichnerowicz, A.: Choix d’\(\oe\)uvres mathématiques, p. 4. Hermann, Paris (1982)

    Google Scholar 

  5. Lichnerowicz, A.: Sur les équations relativistes de la gravitation. Bulletin de la S.M.F. 80, 237 (1952). http://www.numdam.org/numdam-bin/item?id=BSMF_1952_80_237_0

  6. Fourès-Bruhat, Y. (Choquet-Bruhat, Y.): Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Mathematica 88, 141 (1952). http://fanfreluche.math.univ-tours.fr

  7. Fourès-Bruhat, Y. (Choquet-Bruhat, Y.): Sur l’Intégration des Équations de la Relativité Générale. J. Ration. Mech. Anal. 5 (1956)

    Google Scholar 

  8. Dirac, P.A.M.: The theory of gravitation in Hamiltonian form. Proc. Roy. Soc. Lond. A 246, 333 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Dirac, P.A.M.: Fixation of coordinates in the Hamiltonian theory of gravitation. Phys. Rev. 114, 924 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research, p. 227. Wiley, New York (1962). http://arxiv.org/abs/gr-qc/0405109

  11. Wheeler, J.A.: Geometrodynamics and the issue of the final state. In: DeWitt, C., DeWitt, B.S. (eds.) Relativity, Groups and Topology, p. 316. Gordon and Breach, New York (1964)

    Google Scholar 

  12. York, J.W.: Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial-value problem of general relativity. J. Math. Phys. 14, 456 (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. York, J.W.: Kinematics and dynamics of general relativity. In: Smarr, L.L. (ed.) Sources of gravitational radiation. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  14. Nakamura, T., Oohara, K., Kojima, Y.: General relativistic collapse to black holes and gravitational waves from black holes. Prog. Theor. Phys. Suppl. 90, 1 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  15. Nakamura, T.: 3D numerical relativity. In: Sasaki, M. (ed.) Relativistic Cosmology, Proceedings of the 8th Nishinomiya-Yukawa Memorial Symposium. Universal Academy Press, Tokyo (1994)

    Google Scholar 

  16. Shibata, M., Nakamura, T.: Evolution of three-dimensional gravitational waves: harmonic slicing case. Phys. Rev. D 52, 5428 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  17. Baumgarte, T.W., Shapiro, S.L.: Numerical integration of Einstein’s field equations. Phys. Rev. D 59, 024007 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  18. Winicour, J.: Characteristic evolution and matching. Living Rev. Relativity 12, 3 (2009). http://www.livingreviews.org/lrr-2009-3

  19. Friedrich, H.: Conformal Einstein evolution, in Ref. [26], p. 1

    Google Scholar 

  20. Frauendiener, J.: Conformal infinity. Living Rev. Relativity 7, 1 (2004). http://www.livingreviews.org/lrr-2004-1

  21. Pretorius, F.: Numerical relativity using a generalized harmonic decomposition. Class. Quantum Grav. 22, 425 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Pretorius, F.: Evolution of binary black-hole spacetimes. Phys. Rev. Lett. 95, 121101 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  23. Pretorius, F.: Simulation of binary black hole spacetimes with a harmonic evolution scheme. Class. Quantum Grav. 23, S529 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Lindblom, L., Scheel, M.A., Kidder, L.E., Owen, R., Rinne, O.: A new generalized harmonic evolution system. Class. Quantum Grav. 23, S447 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Scheel, M.A., Boyle, M., Chu, T., Kidder, L.E., Matthews, K.D., Pfeiffer, H.P.: High-accuracy waveforms for binary black hole inspiral, merger, and ringdown. Phys. Rev. D 79, 024003 (2009)

    Article  ADS  Google Scholar 

  26. Frauendiener, J., Friedrich, H. (eds.): The Conformal Structure of Space-Times: Geometry, Analysis, Numerics. Lecture Notes in Physics, vol. 604, Springer, Heidelberg (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gourgoulhon, É. (2012). Introduction. In: 3+1 Formalism in General Relativity. Lecture Notes in Physics, vol 846. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24525-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24525-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24524-4

  • Online ISBN: 978-3-642-24525-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics