Skip to main content

Semantically Configurable Consistency Analysis for Class and Object Diagrams

  • Conference paper
Model Driven Engineering Languages and Systems (MODELS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6981))

Abstract

Checking consistency between an object diagram (OD) and a class diagram (CD) is an important analysis problem. However, several variations in the semantics of CDs and ODs, as used in different contexts and for different purposes, create a challenge for analysis tools. To address this challenge in this paper we investigate semantically configurable model analysis. We formalize the variability in the languageā€™s semantics using a feature model: each configuration that the model permits induces a different semantics. Moreover, we develop a parametrized analysis that can be instantiated to comply with every legal configuration of the feature model. Thus, the analysis is semantically configured and its results change according to the semantics induced by the selected feature configuration. The ideas are implemented using a parametrized transformation to Alloy. The work can be viewed as a case study example for a formal and automated approach to handling semantic variability in modeling languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alloy Analyzer website, http://alloy.mit.edu/ (accessed July 2011)

  2. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transformation from UML to Alloy. Software and Systems ModelingĀ 9(1), 69ā€“86 (2010)

    ArticleĀ  Google ScholarĀ 

  3. Batory, D.S.: Feature models, grammars, and propositional formulas. In: Obbink, H., Pohl, K. (eds.) SPLC 2005. LNCS, vol.Ā 3714, pp. 7ā€“20. Springer, Heidelberg (2005)

    ChapterĀ  Google ScholarĀ 

  4. Broy, M., Cengarle, M.V., Grƶnniger, H., Rumpe, B.: Considerations and Rationale for a UML System Model. In: Lano, K. (ed.) UML 2 Semantics and Applications. Wiley, Chichester (2009)

    Google ScholarĀ 

  5. Broy, M., Cengarle, M.V., Grƶnniger, H., Rumpe, B.: Definition of the System Model. In: Lano, K. (ed.) UML 2 Semantics and Applications. Wiley, Chichester (2009)

    Google ScholarĀ 

  6. Cabot, J., ClarisĆ³, R., Riera, D.: UMLtoCSP: a tool for the formal verification of UML/OCL models using constraint programming. In: ASE, pp. 547ā€“548. ACM, New York (2007)

    ChapterĀ  Google ScholarĀ 

  7. Cengarle, M.V., Grƶnniger, H., Rumpe, B.: System Model Semantics of Class Diagrams. Informatik-Bericht 2008-05, Technische UniversitƤt Braunschweig (2008)

    Google ScholarĀ 

  8. Cengarle, M.V., Grƶnniger, H., Rumpe, B.: Variability within modeling language definitions. In: SchĆ¼rr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol.Ā 5795, pp. 670ā€“684. Springer, Heidelberg (2009)

    ChapterĀ  Google ScholarĀ 

  9. Czarnecki, K., Eisenecker, U.: Generative Programming Methods, Tools, and Applications. Addison-Wesley, Reading (2000)

    Google ScholarĀ 

  10. Evans, A., France, R.B., Lano, K., Rumpe, B.: The UML as a Formal Modeling Notation. In: BĆ©zivin, J., Muller, P.-A. (eds.) UML 1998. LNCS, vol.Ā 1618, pp. 336ā€“348. Springer, Heidelberg (1999)

    ChapterĀ  Google ScholarĀ 

  11. FreeMarker, http://freemarker.org/ (accessed July 2011)

  12. Gogolla, M., BĆ¼ttner, F., Richters, M.: USE: A UML-based specification environment for validating UML and OCL. Sci. Comput. ProgramĀ 69(1-3), 27ā€“34 (2007)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  13. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge (2006)

    Google ScholarĀ 

  14. KƤstner, C., ThĆ¼m, T., Saake, G., Feigenspan, J., Leich, T., Wielgorz, F., Apel, S.: FeatureIDE: A tool framework for feature-oriented software development. In: ICSE, pp. 611ā€“614 (2009)

    Google ScholarĀ 

  15. Krahn, H., Rumpe, B., Vƶlkel, S.: MontiCore: a framework for compositional development of domain specific languages. Int. J. on Software Tools for Technology Transfer (STTT)Ā 12(5), 353ā€“372 (2010)

    ArticleĀ  Google ScholarĀ 

  16. Lu, Y., Atlee, J.M., Day, N.A., Niu, J.: Mapping template semantics to SMV. In: ASE, pp. 320ā€“325. IEEE Computer Society, Los Alamitos (2004)

    Google ScholarĀ 

  17. Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: Class diagrams analysis using Alloy revisited. In: Whittle, J., Clark, T., KĆ¼hne, T. (eds.) MODELS. LNCS, vol.Ā 6981, pp. 592ā€“607. Springer, Heidelberg (2011)

    Google ScholarĀ 

  18. MendonƧa, M., Branco, M., Cowan, D.D.: S.P.L.O.T.: software product lines online tools. In: OOPSLA Companion, pp. 761ā€“762 (2009), http://www.splot-research.org/

  19. MontiCore project, http://www.monticore.org/

  20. Niu, J., Atlee, J.M., Day, N.A.: Template semantics for model-based notations. IEEE Trans. Software Eng.Ā 29(10), 866ā€“882 (2003)

    ArticleĀ  Google ScholarĀ 

  21. Perlis, A.J.: Epigrams on programming. SIGPLAN NoticesĀ 17(9), 7ā€“13 (1982)

    ArticleĀ  Google ScholarĀ 

  22. Prout, A., Atlee, J.M., Day, N.A., Shaker, P.: Semantically configurable code generation. In: Busch, C., Ober, I., Bruel, J.-M., Uhl, A., Vƶlter, M. (eds.) MODELS 2008. LNCS, vol.Ā 5301, pp. 705ā€“720. Springer, Heidelberg (2008)

    ChapterĀ  Google ScholarĀ 

  23. Rumpe, B.: Modellierung mit UML. Springer, Heidelberg (2004)

    BookĀ  MATHĀ  Google ScholarĀ 

  24. Semantic variability project website, http://www.se-rwth.de/materials/semvar/

  25. Simmonds, J., Bastarrica, M.C.: A tool for automatic UML model consistency checking. In: ASE, pp. 431ā€“432. ACM, New York (2005)

    ChapterĀ  Google ScholarĀ 

  26. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying UML/OCL models using Boolean satisfiability. In: DATE, pp. 1341ā€“1344. IEEE, Los Alamitos (2010)

    Google ScholarĀ 

  27. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using Description Logic to Maintain Consistency between UML Models. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol.Ā 2863, pp. 326ā€“340. Springer, Heidelberg (2003)

    ChapterĀ  Google ScholarĀ 

  28. Taleghani, A., Atlee, J.M.: Semantic variations among UML stateMachines. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol.Ā 4199, pp. 245ā€“259. Springer, Heidelberg (2006)

    ChapterĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maoz, S., Ringert, J.O., Rumpe, B. (2011). Semantically Configurable Consistency Analysis for Class and Object Diagrams. In: Whittle, J., Clark, T., KĆ¼hne, T. (eds) Model Driven Engineering Languages and Systems. MODELS 2011. Lecture Notes in Computer Science, vol 6981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24485-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24485-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24484-1

  • Online ISBN: 978-3-642-24485-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics