Skip to main content

Supervised Segmentation of Fiber Tracts

  • Conference paper
Similarity-Based Pattern Recognition (SIMBAD 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7005))

Included in the following conference series:

Abstract

In this work we study the problem of supervised tract segmentation from tractography data, a vectorial representation of the brain connectivity extracted from diffusion magnetic resonance images. We report a case study based on a dataset where for each tractography of three subjects the segmentation of eight major anatomical tracts was manually operated by expert neuroanatomists. Domain specific distances that encodes the dissimilarity of tracts do not allow to define a positive semi-definite kernel function. We show that a dissimilarity representation based on such distances enables the successful design of a classifier. This approach provides a robust encoding which proves to be effective using a linear classifier. Our empirical analysis shows that we obtain better tract segmentation than previously proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner, J., Friston, K.J.: Voxel-Based Morphometry The Methods. NeuroImage 11(6), 805–821 (2000)

    Article  Google Scholar 

  2. Balcan, M.-F., Blum, A., Srebro, N.: A theory of learning with similarity functions. Machine Learning 72(1), 89–112 (2008)

    Article  Google Scholar 

  3. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophysical Journal 66(1), 259–267 (1994)

    Article  Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning, 1st edn. Information Science and Statistics. Springer, Heidelberg (2006); corr. 2nd printing edn. (October 2007)

    MATH  Google Scholar 

  5. Boser, B.E., Guyon, I., Vapnik, V.: A Training Algorithm for Optimal Margin Classifiers. In: Computational Learing Theory, pp. 144–152 (1992)

    Google Scholar 

  6. Bozzali, M., Falini, A., Franceschi, M., Cercignani, M., Zuffi, M., Scotti, G., Comi, G., Filippi, M.: White matter damage in Alzheimer’s disease assessed in vivo using diffusion tensor magnetic resonance imaging. Journal of Neurology, Neurosurgery & Psychiatry 72(6), 742–746 (2002)

    Article  Google Scholar 

  7. Chen, Y., Garcia, E.K., Gupta, M.R., Rahimi, A., Cazzanti, L.: Similarity-based Classification: Concepts and Algorithms. J. Mach. Learn. Res. 10, 747–776 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Stochastic Modelling and Applied Probability, corrected edn. Springer, Heidelberg (1996)

    Book  MATH  Google Scholar 

  9. Dubuisson, M.P., Jain, A.K.: A modified Hausdorff distance for object matching. In: Proceedings of 12th International Conference on Pattern Recognition, vol. 1, pp. 566–568. IEEE Comput. Soc. Press, Los Alamitos (1994)

    Chapter  Google Scholar 

  10. Evans, A.C., Collins, D.L., Millst, S.R., Brown, E.D., Kelly, R.L., Peters, T.M.: 3D statistical neuroanatomical models from 305 MRI volumes. In: Nuclear Science Symposium and Medical Imaging Conference, pp. 1813–1817 (1993)

    Google Scholar 

  11. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer Series in Statistics, corr. 3rd printing 5th printing. edn. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  12. Maddah, M., Mewes, A.U.J., Haker, S., Grimson, W.E.L., Warfield, S.K.: Automated Atlas-Based Clustering of White Matter Fiber Tracts from DTMRI. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 188–195. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Mori, S., van Zijl, P.C.M.: Fiber tracking: principles and strategies a technical review. NMR Biomed. 15(7-8), 468–480 (2002)

    Article  Google Scholar 

  14. Nezamzadeh, M., Van Wedeen, J., Wang, R., Zhang, Y., Zhan, W., Young, K., Meyerhoff, D.J., Weiner, M.W., Schuff, N.: In-vivo investigation of the human cingulum bundle using the optimization of MR diffusion spectrum imaging. European Journal of Radiology 75(1) (July 2010)

    Google Scholar 

  15. O’Donnell, L.J., Westin, C.-F.F.: Automatic tractography segmentation using a high-dimensional white matter atlas. IEEE Transactions on Medical Imaging 26(11), 1562–1575 (2007)

    Article  Google Scholar 

  16. Olivetti, E., Mognon, A., Greiner, S., Avesani, P.: Brain Decoding: Biases in Error Estimation. In: First Workshop on Brain Decoding: Pattern Recognition Challenges in Neuroimaging (WBD) (August 2010)

    Google Scholar 

  17. Olivetti, E., Veeramachaneni, S., Greiner, S., Avesani, P.: Brain connectivity analysis by reduction to pair classification. In: 2nd International Workshop on Cognitive Information Processing (CIP), pp. 275–280 (June 2010)

    Google Scholar 

  18. Pan, S.J., Yang, Q.: A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  19. Pekalska, E., Duin, R., Paclik, P.: Prototype selection for dissimilarity-based classifiers. Pattern Recognition 39(2), 189–208 (2006)

    Article  MATH  Google Scholar 

  20. Pekalska, E., Paclik, P., Duin, R.P.W.: A generalized kernel approach to dissimilarity-based classification. J. Mach. Learn. Res. 2, 175–211 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization, pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

  22. Schiavo, R.A., Hand, D.J.: Ten More Years of Error Rate Research. International Statistical Review 68(3), 295–310 (2000)

    Article  MATH  Google Scholar 

  23. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, 1st edn. Adaptive Computation and Machine Learning. The MIT Press, Cambridge (2001)

    Google Scholar 

  24. Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Van Wedeen, J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48(4), 577–582 (2002)

    Article  Google Scholar 

  25. Wang, X., Grimson, Westin, C.-F.: Tractography segmentation using a hierarchical Dirichlet processes mixture model. NeuroImage 54(1), 290–302 (2011)

    Article  Google Scholar 

  26. Zhang, S., Correia, S., Laidlaw, D.H.: Identifying White-Matter Fiber Bundles in DTI Data Using an Automated Proximity-Based Fiber-Clustering Method. IEEE Transactions on Visualization and Computer Graphics 14(5), 1044–1053 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Olivetti, E., Avesani, P. (2011). Supervised Segmentation of Fiber Tracts. In: Pelillo, M., Hancock, E.R. (eds) Similarity-Based Pattern Recognition. SIMBAD 2011. Lecture Notes in Computer Science, vol 7005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24471-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24471-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24470-4

  • Online ISBN: 978-3-642-24471-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics