Skip to main content

An Information Theoretic Approach to Learning Generative Graph Prototypes

  • Conference paper
Similarity-Based Pattern Recognition (SIMBAD 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7005))

Included in the following conference series:

Abstract

We present a method for constructing a generative model for sets of graphs by adopting a minimum description length approach. The method is posed in terms of learning a generative supergraph model from which the new samples can be obtained by an appropriate sampling mechanism. We commence by constructing a probability distribution for the occurrence of nodes and edges over the supergraph. We encode the complexity of the supergraph using the von-Neumann entropy. A variant of EM algorithm is developed to minimize the description length criterion in which the node correspondences between the sample graphs and the supergraph are treated as missing data.The maximization step involves updating both the node correspondence information and the structure of supergraph using graduated assignment. In the experimental part, we demonstrate the practical utility of our proposed algorithm and show that our generative model gives good graph classification results. Besides, we show how to perform graph clustering with Jensen-Shannon kernel and generate new sample graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friedman, N., Koller, D.: Being Bayesian about network structure.A Bayesian approach to structure discovery in Bayesian networks. Machine Learning, 95–125 (2003)

    Google Scholar 

  2. Christmas, W.J., Kittler, J., Petrou, M.: Probabilistic feature labeling schemes: modeling compatibility coefficient distribution. Image and Vision Computing 14, 617–625 (1996)

    Article  Google Scholar 

  3. Bagdanov, A.D., Worring, M.: First order Gaussian graphs for efficient structure classification. Pattern Recognition 36, 1311–1324 (2003)

    Article  MATH  Google Scholar 

  4. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. IEEE PAMI 23, 681–685 (2001)

    Article  Google Scholar 

  5. Luo, B., Hancock, E.R.: A spectral approach to learning structural variations in graphs. Pattern Recognition 39, 1188–1198 (2006)

    Article  MATH  Google Scholar 

  6. Torsello, A., Hancock, E.R.: Learning shape-classes using a mixture of tree-unions. IEEE PAMI 28, 954–967 (2006)

    Article  Google Scholar 

  7. Luo, B., Hancock, E.R.: Structural graph matching using the EM alogrithm and singular value decomposition. IEEE PAMI 23, 1120–1136 (2001)

    Article  Google Scholar 

  8. White, D., Wilson, R.C.: Parts based generative models for graphs. In: ICPR, pp. 1–4 (2008)

    Google Scholar 

  9. Rissanen, J.: Modelling by Shortest Data Description. Automatica, 465–471 (1978)

    Google Scholar 

  10. Rissanen, J.: Stochastic complexity in statistical inquiry. World Scientific, Singapore (1989)

    MATH  Google Scholar 

  11. Passerini, F., Severini, S.: The von neumann entropy of networks, arXiv:0812.2597 (2008)

    Google Scholar 

  12. Cover, T., Thomas, J.: Elements of Information Theory. John Wiley&Sons, New York (1991)

    Book  MATH  Google Scholar 

  13. Grunwald, P.: Minimum Description Length Tutorial. In: Advances in Minimum Description Length: Theory and Applications (2005)

    Google Scholar 

  14. Bridle, J.S.: Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters. In: Advances in Neural Information Processing Systems, vol. 2, pp. 211–217 (1990)

    Google Scholar 

  15. Gold, S., Rangarajan, A.: A Graduated Assignment Algorithm for Graph Matching. IEEE PAMI 18, 377–388 (1996)

    Article  Google Scholar 

  16. Figueiredo, M.A.T., Jain, A.K.: Unsupervised learning of finite mixture models. IEEE PAMI 24, 381–396 (2002)

    Article  Google Scholar 

  17. Wilson, R.C., Zhu, P.: A study of graph spectra for comparing graphs and trees. Pattern Recognition 41, 2833–2841 (2008)

    Article  MATH  Google Scholar 

  18. Shi, J., Malik, J.: Normalized cuts and image segmentation. In: CVPR, pp. 731–737 (1997)

    Google Scholar 

  19. Robles-Kelly, A., Hancock, E.R.: A riemannian approach to graph embedding. Pattern Recognition 40, 1042–1056 (2007)

    Article  MATH  Google Scholar 

  20. Nene, S.A., Nayar, S.K., Murase, H.: Columbiaobjectimagelibrary (COIL100). Technical Report CUCS-006-96. Department of Computer Science, Columbia University (1996)

    Google Scholar 

  21. Lowe, D.G.: Distinctive image features from scale invariant keypoints. IJCV 99, 91–110 (2004)

    Article  Google Scholar 

  22. Wilson, R.C., Hancock, E.R.: Structural matching by discrete relaxation. IEEE PAMI 19, 634–648 (1997)

    Article  Google Scholar 

  23. Han, L., Wilson, R.C., Hancock, E.R.: A Supergraph-based Generative Model. In: ICPR, pp. 1566–1569 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Han, L., Hancock, E.R., Wilson, R.C. (2011). An Information Theoretic Approach to Learning Generative Graph Prototypes. In: Pelillo, M., Hancock, E.R. (eds) Similarity-Based Pattern Recognition. SIMBAD 2011. Lecture Notes in Computer Science, vol 7005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24471-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24471-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24470-4

  • Online ISBN: 978-3-642-24471-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics