Polyhedral Surfaces and the Weil–Petersson Form

  • Mauro Carfora
  • Annalisa Marzuoli
Part of the Lecture Notes in Physics book series (LNP, volume 845)


Let \(\overline{{\mathfrak{M}}}_{g,N_{0}}\) denote the Deligne–Mumford compactification of the moduli space \({{\mathfrak{M}}}_{g,N_{0}}\) of \(N_0\)–pointed Riemann surfaces of genus g, (see Appendix A).


Modulus Space Conical Angle Hyperbolic Surface Hyperbolic Structure Polyhedral Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bauer, M., Itzykson, C.: Triangulations. In: The Grothendieck Theory of Dessins d’Enfants. Schneps, L. (ed.) Lond. Math. Soc. Lect. Notes Series, vol. 200, Cambridge University Press, Cambridge, p. 179 (1994)Google Scholar
  2. 2.
    Belyĭ, G.V.: On Galois extensions of a maximal cyclotomic fields. Math. USSR Izv. 14, 247–256 (1980)zbMATHCrossRefGoogle Scholar
  3. 3.
    Benedetti, R., Petronio, C.: Lectures on Hyperbolic Geometry Universitext. Springer, New York (1992)Google Scholar
  4. 4.
    Carfora, M., Dappiaggi, C., Gili, V.L.: Triangulated surfaces in Twistor space: a kinematical set up for Open/Closed string duality JHEP (2006) 0612:017, arXiv:hep-th/0607146Google Scholar
  5. 5.
    Mulase, M., Penkava, M.: Ribbon graphs, quadratic differentials on Riemann surfaces and algebraic curves defined over \(\overline{{\mathbb{Q}}}\). Asian J. Math. 2(4), 875–920 (1998) math-ph/9811024 v2 (1998)Google Scholar
  6. 6.
    Chapman, M.K., Mulase, M., Safnuk, B. : The Kontsevich constants for the volume of the moduli of curves and topological recursion, arXiv:1009.2055 [math.AG]Google Scholar
  7. 7.
    Do, N.: The asymptotic Weil–Petersson form and intersection theory on \(\overline{\frak{M}}_{g, n}.\) arXiv: 1010.4126v1 [math.GT]Google Scholar
  8. 8.
    Gallego, E., Reventós, A., Solanes, G., Teufel, E.: Horospheres in Hyperbolic Geometry. Preprint (2008) (
  9. 9.
    Looijenga, E.,: Cellular decomposition of compactified moduli spaces of pointed curves. The moduli space of curves, pp. 369–400, Birkhäuser Boston (1995)Google Scholar
  10. 10.
    Manin, Y.I., Zograf, P.: Invertible cohomological filed theories and Weil–Petersson volumes Annales de l’ Institute Fourier, 50, 519 (2000) [arXiv:math-ag/9902051]Google Scholar
  11. 11.
    Mondello, G.: Riemann surfaces, arc systems and Weil-Petersson form, Bollettino U.M.I. (9) I (2008), pp. 751–766Google Scholar
  12. 12.
    Mondello, G.: Triangulated Riemann surfaces with boundary and the Weil–Petersson Poisson structure. J. Differential Geometry 81, 391–436 (2009)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Mondello, G.: Combinatorial classes on the moduli space of Riemann surfaces are tautological. Int. Math. Res. Not. 44, 2329–2390 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mondello, G.: Riemann surfaces, ribbon graphs and combinatorial classes. Handbook of Teichmüller theory, vol.2, European Mathematical Society, ed. Athanase Papadopoulos, pp. 151–216 (2009)Google Scholar
  15. 15.
    Penner, R.C.: The decorated Teichmüller space of punctured surfaces.. Comm. Math. Phys. 113, 299–339 (1987)MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Penner, R.C.: Weil–Petersson volumes. J. Diff. Geom. 35, 5590 (1992)MathSciNetGoogle Scholar
  17. 17.
    Penner R.C. Lambda lengths. Lecture notes from a master’s class on Decorated Teichmuller Theory, Aarhus University (2006)
  18. 18.
    Thurston, W.P.: Three-dimensional Geometry and Topology, vol. 1. Levy, S. (ed.) Princeton University Press (1997). See also the full set of Lecture Notes (December 1991 Version), electronically available at the Math. Sci. Res. Inst. (Berkeley)Google Scholar
  19. 19.
    Voevodskii, V.A., Shabat, G.B.: Equilateral triangulations of Riemann surfaces, and curves over algebraic number fields. Soviet Math. Dokl. 39, 38 (1989)Google Scholar
  20. 20.
    Zograf, P.: Weil–Petersson volumes of moduli spaces of curves and curves and the genus expansion in two-dimensional [arXiv:math.AG/9811026]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mauro Carfora
    • 1
  • Annalisa Marzuoli
    • 1
  1. 1.Dipto. Fisica Nucleare e TeoricaIstituto Nazionale di Fisica Nucleare e Teorica, Sez. di Pavia, Università degli Studi di PaviaPaviaItaly

Personalised recommendations