The Equation of Cinquini-Cibrario

  • Thomas H. Otway
Part of the Lecture Notes in Mathematics book series (LNM, volume 2043)


Although the study of mixed elliptic–hyperbolic equations goes back at least toRiemann’s computation of the Laplacian in toroidal coordinates (c.f. [47] or p. 461, (B) of [7]), the first systematic study of well-posedness for boundary value problemsappears to be the memoir by Tricomi [50]


Dirichlet Problem Fundamental Solution Strong Solution Solar Corona Neumann Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agmon, S., Nirenberg, L., Protter, M.H.: A maximum principle for a class of hyperbolic equations and applications to equations of mixed elliptic–hyperbolic type. Commun. Pure Appl. Math. 6, 455–470 (1953)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Aly, J.J.: On the uniqueness of the determination of the coronal potential magnetic field from line-of-sight boundary conditions. Solar Phys. 111, 287–296 (1987)CrossRefGoogle Scholar
  3. 3.
    Amari, T., Aly, J.J., Luciani, J.F., Boulmezaoud, T.Z., Mikic, Z.: Reconstructing the solar coronal magnetic field as a force-free magnetic field. Solar Phys. 174, 129–149 (1997)CrossRefGoogle Scholar
  4. 4.
    Amari, T., Boulbe, C., Boulmezaoud, T.Z.: Computing Beltrami fields. SIAM J. Sci. Comput. 31(5), 3217–3254 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Amari, T., Luciani, J.F., Mikick, Z.: Magnetohydrodynamic models of solar coronal magnetic fields. Plasma Phys. Control. Fusion 41, A779–A786 (1999)CrossRefGoogle Scholar
  6. 6.
    Barros-Neto, J., Gelfand, I.M.: Fundamental solutions for the Tricomi operator. Duke Math. J. 98, 465–483 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bateman, H.: Partial Differential Equations. Dover, New York (1944)zbMATHGoogle Scholar
  8. 8.
    Berezanskii, Yu.M.: Energy inequalities for some classes of equations of mixed type [in Russian]. Dokl. Akad. Nauk SSSR 132, 9–12 (1960) [Soviet Math. Doklady 1, 447–451 (1960)]Google Scholar
  9. 9.
    Berezanskii, Yu.M.: Spaces with negative norms. Russian Math. Surveys 18(1), 63–95 (1963)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Berezanskii, Ju.M.: Expansions in Eigenfunctions of Selfadjoint Operators. American Mathematical Society, Providence (1968)Google Scholar
  11. 11.
    Bers, L.: Mathematical Aspects of Subsonic and Transonic Gas Dynamics. Wiley, New York (1958)zbMATHGoogle Scholar
  12. 12.
    Bitsadze, A.V.: Equations of the Mixed Type, Zador, P. (trans). Pergammon, New York (1964)Google Scholar
  13. 13.
    Boulmezaoud, T.A., Amari, T.: On the existence of non-linear force-free fields in three-dimensional domains. Z. Angew. Math. Phys. 51, 942–967 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Boulmezaoud, T-Z., Maday, Y., Amari, T.: On the linear force-free fields in bounded and unbounded three-dimensional domains. Math. Modelling Numer. Anal. 33, 359–393 (1999)Google Scholar
  15. 15.
    Čanić, S., Keyfitz, B.: An elliptic problem arising from the unsteady transonic small disturbance equation J. Diff. Equations 125, 548–574 (1996)CrossRefzbMATHGoogle Scholar
  16. 16.
    Chen, S-X.: The fundamental solution of the Keldysh type operator, Science in China, Ser. A: Mathematics 52, 1829–1843 (2009)CrossRefzbMATHGoogle Scholar
  17. 17.
    Cibrario, M.: Sulla riduzione a forma canonica delle equazioni lineari alle derivate parziali di secondo ordine di tipo misto. Rendiconti del R. Insituto Lombardo 65 (1932)Google Scholar
  18. 18.
    Cibrario, M.: Alcuni teoremi di esistenza e di unicita per l’equazione xz xx,  + z yy = 0. Atti R. Acc. Torino 68 (1932–1933)Google Scholar
  19. 19.
    Cibrario, M.: Intorno ad una equazione lineare alle derivate parziali del secondo ordine di tipe misto iperbolico-ellittica. Ann. Sc. Norm. Sup. Pisa, Cl. Sci., Ser. 2 3(3, 4), 255–285 (1934)Google Scholar
  20. 20.
    Didenko, V.P.: On the generalized solvability of the Tricomi problem. Ukrain. Math. J. 25, 10–18 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Flyer, N., Fornberg,B., Thomas, S., Low, B.C.: Magnetic field confinement in the solar corona. I. Force-free magnetic fields. Astrophys. J. 606, 1210–1222 (2004)Google Scholar
  22. 22.
    Frankl’, F.L.: Problems of Chaplygin for mixed sub- and supersonic flows [in Russian]. Izv. Akad. Nauk SSSR, ser. mat. 9(2), 121–143 (1945)Google Scholar
  23. 23.
    Friedrichs, K.O.: Symmetric positive linear differential equations. Commun. Pure Appl. Math. 11, 333–418 (1958)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Gellerstedt, S.: Quelques problèmes mixtes lour l’équation y m z xx + z yy = 0. Arkiv für Matematik, Astronomi och Fusik 26A(3), 1–32 (1937)Google Scholar
  25. 25.
    Grad, H., Rubin, H.: Hydromagnetic equilibria and force free fields. In: Proceedings of the 2nd International Conference on Peaceful Uses of Atomic Energy, vol. 31, p. 190. United Nations, Geneva (1958)Google Scholar
  26. 26.
    Hudson, S.R., Hole, M.J., Dewar, R.L.: Eigenvalue problems for Beltrami fields arising in a 3-D toroidal MHD equilibrium problem. Phys. Plasmas, 13 (2007)Google Scholar
  27. 27.
    Janhunen, P.: Magnetically dominated plasma models of ball lightning. Annales Geophysicae. Atmos. Hydrospheres Space Sci. 9, 377–380 (1991)Google Scholar
  28. 28.
    Katsanis, T.: Numerical techniques for the solution of symmetric positive linear differential equations. Ph.D. thesis, Case Institute of Technology (1967)Google Scholar
  29. 29.
    Katsanis, T.: Numerical solution of Tricomi equation using theory of symmetric positive differential equations. SIAM J. Numer. Anal. 6, 236–253 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Keldysh, M.V.: On certain classes of elliptic equations with singularity on the boundary of the domain [in Russian]. Dokl. Akad. Nauk SSSR 77, 181–183 (1951)Google Scholar
  31. 31.
    Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)Google Scholar
  32. 32.
    Lupo, D., Morawetz, C.S., Payne, K.R.: On closed boundary value problems for equations of mixed elliptic-hyperbolic type. Commun. Pure Appl. Math. 60, 1319–1348 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Lupo, D., Morawetz, C.S., Payne, K.R.: Erratum: On closed boundary value problems for equations of mixed elliptic-hyperbolic type [Commun. Pure Appl. Math. 60, 1319–1348 (2007)]. Commun. Pure Appl. Math. 61, 594 (2008)Google Scholar
  34. 34.
    Lupo, D., Payne, K.R.: Critical exponents for semilinear equations of mixed elliptic-hyperbolic and degenerate types. Commun. Pure Appl. Math. 56, 403–424 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Magnus, W., Oberhettinger, F.: Formulas and Theorems for the Special Functions of Mathematical Physics, J. Werner, trans. Chelsea, New York (1949)Google Scholar
  36. 36.
    Manwell, A.R.: On locally supersonic plane flows with a weak shock wave, J. Math. Mech. 16, 589–638 (1966)zbMATHMathSciNetGoogle Scholar
  37. 37.
    Manwell, A.R.: The Hodograph Equations. Hafner Publishing, New York (1971)zbMATHGoogle Scholar
  38. 38.
    Morawetz, C.S.: Note on a maximum principle and a uniqueness theorem for an elliptic-hyperbolic equation. Proc. R. Soc. London, Ser. A 236, 141–144 (1956)Google Scholar
  39. 39.
    Morawetz, C.S.: Non-existence of transonic flow past a profile. Commun. Pure Appl. Math. 17, 357–367 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Morawetz, C.S., Stevens, D.C., Weitzner, H.: A numerical experiment on a second-order partial differential equation of mixed type. Commun. Pure Appl. Math. 44, 1091–1106 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966)zbMATHGoogle Scholar
  42. 42.
    Olver, F.W.J.: Asymptotics and Special Functions. A K Peters, Natick (1997)zbMATHGoogle Scholar
  43. 43.
    Otway, T.H.: A boundary-value problem for cold plasma dynamics. J. Appl. Math. 3, 17–33 (2003)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Otway, T.H.: Energy inequalities for a model of wave propagation in cold plasma. Publ. Mat. 52, 195–234 (2008)zbMATHMathSciNetGoogle Scholar
  45. 45.
    Otway, T.H.: Unique solutions to boundary value problems in the cold plasma model. SIAM J. Math. Anal. 42, 3045–3053 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Renardy, M., Rogers, R.C.: An Introduction to Partial Differential Equations. Springer, Berlin (2004)zbMATHGoogle Scholar
  47. 47.
    Riemann, B.: Partielle Differentialgleichungen. Hattendorf’s (ed.) (1861)Google Scholar
  48. 48.
    Sorokina, N.G.: Strong solvability of the Tricomi problem [in Russian]. Ukrain. Mat. Zh. 18, 65–77 (1966)CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Sorokina, N.G.: Strong solvability of the generalized Tricomi problem [in Russian]. Ukrain. Mat. Zh. 24, 558–561 (1972) [Ukrainian Math. J. 24, 451–453 (1973)]Google Scholar
  50. 50.
    Tricomi, F.: Sulle equazioni lineari alle derivate parziali di secondo ordine, di tipo misto. Rendiconti Atti dell’ Accademia Nazionale dei Lincei Ser. 5 14, 134–247 (1923)Google Scholar
  51. 51.
    Tsui, K.H.: A self-similar magnetohydrodynamic model for ball lightnings. Phys. Plasmas 13, 072102 (2006)CrossRefMathSciNetGoogle Scholar
  52. 52.
    Tsui, K.H., Serbeto, A.: Time-dependent magnetohydrodynamic self-similar extragalactic jets. Astrophys. J. 658, 794–803 (2007)CrossRefGoogle Scholar
  53. 53.
    Weitzner, H.: “Wave propagation in a plasma based on the cold plasma model.” Courant Inst. Math. Sci. Magneto-Fluid Dynamics Div. Report MF–103, August, 1984Google Scholar
  54. 54.
    Wheatland, M.S.: Reconstruction of nonlinear force-free fields and solar flare prediction. In: Duldig, M. (ed.) Advances in Geosciences, vol. 8: Solar Terrestrial, pp. 123–137. World Scientific, Singapore (2006)Google Scholar
  55. 55.
    Yosida, K.: Functional Analysis. Springer, Berlin (1980)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas H. Otway
    • 1
  1. 1.Department of Mathematical SciencesYeshiva UniversityNew YorkUSA

Personalised recommendations