Mathematical Preliminaries

  • Thomas H. Otway
Part of the Lecture Notes in Mathematics book series (LNM, volume 2043)


The purpose of this chapter is to emphasize some standard material in functional analysis and the theory of partial differential equations which will be particularly useful in subsequent chapters. In addition, a brief survey of applications is given in Sect. 2.7. Specialists in partial differential equations may prefer to skip Sects. 2.1– 2.6 of this chapter.


Dirichlet Problem Hyperbolic Equation Beltrami Operator Hyperbolic Type Linear Partial Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bachman, G., Narici, L.: Functional Analysis. Academic Press, San Diego (1966)zbMATHGoogle Scholar
  2. 2.
    Beirão de Veiga, H.: On non-Newtonian p-fluids. The pseudo-plastic case. J. Math. Anal. Appl. 344, 175–185 (2008)Google Scholar
  3. 3.
    Bers, L.: Mathematical Aspects of Subsonic and Transonic Gas Dynamics. Wiley, New York (1958)zbMATHGoogle Scholar
  4. 4.
    Bick, J.H., Newell, G.F.: A continuum model for two-dimensional traffic flow. Quart. Appl. Math. 18, 191–204 (1960)zbMATHGoogle Scholar
  5. 5.
    N. Bîlă, N.: Application of symmetry analysis to a PDE arising in the car windshield design. SIAM J. Appl. Math. 65, 113–130 (2004)Google Scholar
  6. 6.
    Born, M., Infeld, L.: Foundation of a new field theory. Proc. R. Soc. London Ser. A 144, 425–451 (1934)CrossRefGoogle Scholar
  7. 7.
    Calabi, E.: Examples of Bernstein problems for some nonlinear equations, Proceedings of the Symposium on Global Analysis, pp. 223–230. University of California at Berkeley (1968)Google Scholar
  8. 8.
    Čanić, S., Keyfitz, B.: An elliptic problem arising from the unsteady transonic small disturbance equation J. Diff. Equations 125, 548–574 (1996)CrossRefzbMATHGoogle Scholar
  9. 9.
    Chapman, C.J.: High Speed Flow. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  10. 10.
    Chen, G-Q., Feldman, M.: Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type. J. Amer. Math. Soc. 16, 461–494 (2003)Google Scholar
  11. 11.
    Chen, S-X.: The fundamental solution of the Keldysh type operator, Science in China, Ser. A: Mathematics 52, 1829–1843 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 2. Wiley-Interscience, New York (1962)zbMATHGoogle Scholar
  13. 13.
    Finkelstein, D., Rubinstein, J.: Ball lightning. Phys. Rev. 135, A390–A396 (1964)Google Scholar
  14. 14.
    Friedrichs, K.O.: Symmetric positive linear differential equations. Commun. Pure Appl. Math. 11, 333–418 (1958)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Garabedian, P.: Partial Differential Equations. American Mathematical Society, Providence (1998)zbMATHGoogle Scholar
  16. 16.
    Gibbons, G.W.: Born-Infeld particles and Dirichlet p-branes. Nucl. Phys. B 514, 603–639 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)zbMATHGoogle Scholar
  18. 18.
    Gu, C.: On partial differential equations of mixed type in n independent variables. Commun. Pure Appl. Math. 34, 333–345 (1981)CrossRefzbMATHGoogle Scholar
  19. 19.
    Hadamard, J.: Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques. Hermann, Paris (1932)Google Scholar
  20. 20.
    Hua, L.K.: Geometrical theory of partial differential equations. In: Chern, S.S., Wen–tsün, W. (eds.) Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, pp. 627–654. Gordon and Breach, New York (1982)Google Scholar
  21. 21.
    Johnson, R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  22. 22.
    Katsanis, T.: Numerical techniques for the solution of symmetric positive linear differential equations. Ph.D. thesis, Case Institute of Technology (1967)Google Scholar
  23. 23.
    Katsanis, T.: Numerical solution of symmetric positive differential equations. Math. Comp. 22, 763–783 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Keyfitz, B.L.: Hold that light! Modeling of traffic flow by differential equations. In: Hardt, R., Forman, R. (eds.) Six Themes on Variation, pp. 127–153. American Mathematical Society, Providence (2005)Google Scholar
  25. 25.
    Keyfitz, B.L.: Mathematical properties of nonhyperbolic models for incompressible two-phase flow, e-print (2000).̃keyfitz/blkp.html. Cited 1 Aug 2011
  26. 26.
    Kong, D-X.: A nonlinear geometric equation related to electrodynamics. Europhys. Lett. 66, 617–623 (2004)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Kosmann-Schwarzbach, Y.: The Noether theorems: Invariance and conservation laws in the twentieth century. Sources and studies in the History of Mathematics and Physical Sciences. Springer, Berlin (2010)Google Scholar
  28. 28.
    Kreyszig, E.: On the theory of minimal surfaces. In: Rassias, Th.M. (ed.) The Problem of Plateau: A Tribute to Jesse Douglas and Tibor Radó, pp. 138–164. World Scientific, Singapore (1992)CrossRefGoogle Scholar
  29. 29.
    Lavrent’ev, M.A., Bitsadze, A.V.: On the problem of equations of mixed type [in Russian], Doklady Akad. Nauk SSSR (n.s.) 70, 373–376 (1950)Google Scholar
  30. 30.
    Lax, P.D., Phillips, R.S.: Local boundary conditions for dissipative symmetric linear differential operators. Commun. Pure Appl. Math. 13, 427–455 (1960)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Lin, C.S.: The local isometric embedding in R 3 of a 2-dimensional Riemanian manifolds with Gaussian curvature changing sign cleanly. Commun. Pure Appl. Math. 39, 867–887 (1986)CrossRefzbMATHGoogle Scholar
  32. 32.
    Liu, J-L.: A finite difference method for symmetric positive operators. Math. of Computation 62, 105–118 (1994)CrossRefzbMATHGoogle Scholar
  33. 33.
    Lupo, D., Payne, K.R.: Critical exponents for semilinear equations of mixed elliptic-hyperbolic and degenerate types. Commun. Pure Appl. Math. 56, 403–424 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Magnanini, R., Talenti, G.: On complex-valued solutions to a 2D eikonal equation. Part one: qualitative properties. Contemporary Math. 283, 203–229 (1999)MathSciNetGoogle Scholar
  35. 35.
    Milani, A., Picard, R.: Decomposition and their application to non-linear electro- and magnetostatic boundary value problems. In: Hildebrandt, S., Leis, R. (eds.) Partial Differential Equations and Calculus of Variations, Lecture Notes in Mathematics, vol. 1357, pp. 370–340. Springer, Berlin (1988)Google Scholar
  36. 36.
    Morawetz, C.S.: A weak solution for a system of equations of elliptic-hyperbolic type. Commun. Pure Appl. Math. 11, 315–331 (1958)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Otway, T.H.: Energy inequalities for a model of wave propagation in cold plasma. Publ. Mat. 52, 195–234 (2008)zbMATHMathSciNetGoogle Scholar
  38. 38.
    Otway, T.H.: Variational equations on mixed Riemannian-Lorentzian metrics. J. Geom. Phys. 58, 1043–1061 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Payne, K.R.: Solvability theorems for linear equations of Tricomi type. J. Mat. Anal. Appl. 215, 262–273 (1997)CrossRefzbMATHGoogle Scholar
  40. 40.
    Phillips, R.S., Sarason, L.: Singular symmetric positive first order differential operators. J. Math. Mech. 8, 235–272 (1966)MathSciNetGoogle Scholar
  41. 41.
    Pilant, M.: The Neumann problem for an equation of Lavrent’ev-Bitsadze type. J. Math. Anal. Appl. 106, 321–359 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Protter, M.H.: Uniqueness theorems for the Tricomi problem. I. J. Rat. Mech. Anal. 2, 107–114 (1953)zbMATHMathSciNetGoogle Scholar
  43. 43.
    Protter, M.H.: Uniqueness theorems for the Tricomi problem, II. J. Rat. Mech. Anal. 4, 721–732 (1955)zbMATHMathSciNetGoogle Scholar
  44. 44.
    Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, Berlin (1984)CrossRefzbMATHGoogle Scholar
  45. 45.
    Riabouchinsky, D.: Sur l’analogie hydraulique des mouvements d’un fluide compressible. C. R. Academie des Sciences, Paris 195, 998 (1932)Google Scholar
  46. 46.
    Sarason, L.: On weak and strong solutions of boundary value problems. Commun. Pure Appl. Math. 15, 237–288 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Sarason, L.: Elliptic regularization for symmetric positive systems. J. Math. Mech. 16, 807–827 (1967)zbMATHMathSciNetGoogle Scholar
  48. 48.
    Sibner, L.M., Sibner, R.J., Yang, Y.: Generalized Bernstein property and gravitational strings in Born–Infeld theory. Nonlinearity 20, 1193–1213 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Springer, Berlin (1983)zbMATHGoogle Scholar
  50. 50.
    Stoker, J.J.: Water Waves. Interscience, New York (1987)Google Scholar
  51. 51.
    Tso, K. (Chou, K-S.): Nonlinear symmetric positive systems. Ann. Inst. Henri Poincaré 9, 339–366 (1992)Google Scholar
  52. 52.
    Wilde, I.F.: Distribution Theory (Generalized Functions). e-Notes. http://homepage.ntlworld.cpm/ivan.wilde/notes/gf/gf.pdf Cited 2 Aug 2011
  53. 53.
    Yang, Y.: Classical solutions in the Born-Infeld theory. Proc. R. Soc. Lond. Ser. A 456, 615–640 (2000)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas H. Otway
    • 1
  1. 1.Department of Mathematical SciencesYeshiva UniversityNew YorkUSA

Personalised recommendations