Skip to main content

Domain Adaptation in Regression

  • Conference paper
Algorithmic Learning Theory (ALT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6925))

Included in the following conference series:

Abstract

This paper presents a series of new results for domain adaptation in the regression setting. We prove that the discrepancy is a distance for the squared loss when the hypothesis set is the reproducing kernel Hilbert space induced by a universal kernel such as the Gaussian kernel. We give new pointwise loss guarantees based on the discrepancy of the empirical source and target distributions for the general class of kernel-based regularization algorithms. These bounds have a simpler form than previous results and hold for a broader class of convex loss functions not necessarily differentiable, including L q losses and the hinge loss. We extend the discrepancy minimization adaptation algorithm to the more significant case where kernels are used and show that the problem can be cast as an SDP similar to the one in the feature space. We also show that techniques from smooth optimization can be used to derive an efficient algorithm for solving such SDPs even for very high-dimensional feature spaces. We have implemented this algorithm and report the results of experiments demonstrating its benefits for adaptation and show that, unlike previous algorithms, it can scale to large data sets of tens of thousands or more points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for domain adaptation. In: NIPS 2006 (2007)

    Google Scholar 

  2. Ben-David, S., Lu, T., Luu, T., Pál, D.: Impossibility theorems for domain adaptation. Journal of Machine Learning Research - Proceedings Track 9, 129–136 (2010)

    Google Scholar 

  3. Blitzer, J., Dredze, M., Pereira, F.: Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification. In: ACL 2007 (2007)

    Google Scholar 

  4. Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Wortman, J.: Learning bounds for domain adaptation. In: NIPS 2007 (2008)

    Google Scholar 

  5. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. The MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  6. Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20(3) (1995)

    Google Scholar 

  7. Dredze, M., Blitzer, J., Talukdar, P.P., Ganchev, K., Graca, J., Pereira, F.: Frustratingly Hard Domain Adaptation for Parsing. In: CoNLL 2007 (2007)

    Google Scholar 

  8. Dudley, R.M.: Real Analysis and Probability. Wadsworth, Belmont (1989)

    MATH  Google Scholar 

  9. Jiang, J., Zhai, C.: Instance Weighting for Domain Adaptation in NLP. In: Proceedings of ACL 2007, pp. 264–271 (2007)

    Google Scholar 

  10. Legetter, C.J., Woodland, P.C.: Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models. Comp. Speech and Lang. (1995)

    Google Scholar 

  11. Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation: Learning bounds and algorithms. In: Proceedings of COLT 2009. Omnipress, Montréal, Canada (2009)

    Google Scholar 

  12. Martínez, A.M.: Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class. IEEE Trans. Pattern Anal. 24(6) (2002)

    Google Scholar 

  13. Nesterov, Y.: A method of solving a convex programming problem with convergence rate O(1/k 2). Soviet Mathematics Doklady 27(2), 372–376 (1983)

    MATH  Google Scholar 

  14. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103, 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nesterov, Y.: Smoothing technique and its applications in semidefinite optimization. Math. Program. 110, 245–259 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nesterov, Y., Nemirovsky, A.: Interior Point Polynomial Methods in Convex Programming: Theory and Appl. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  17. Pietra, S.D., Pietra, V.D., Mercer, R.L., Roukos, S.: Adaptive language modeling using minimum discriminant estimation. In: HLT 1991: Workshop on Speech and Nat. Lang. (1992)

    Google Scholar 

  18. Rosenfeld, R.: A Maximum Entropy Approach to Adaptive Statistical Language Modeling. Computer Speech and Language 10, 187–228 (1996)

    Article  Google Scholar 

  19. Saunders, C., Gammerman, A., Vovk, V.: Ridge Regression Learning Algorithm in Dual Variables. In: ICML (1998)

    Google Scholar 

  20. Steinwart, I.: On the influence of the kernel on the consistency of support vector machines. JMLR 2, 67–93 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Vapnik, V.N.: Statistical Learning Theory. J. Wiley & Sons, Chichester (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cortes, C., Mohri, M. (2011). Domain Adaptation in Regression. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2011. Lecture Notes in Computer Science(), vol 6925. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24412-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24412-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24411-7

  • Online ISBN: 978-3-642-24412-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics