Introduction and Summary

  • Martin GreiterEmail author
Part of the Springer Tracts in Modern Physics book series (STMP, volume 244)


Fractional quantization, and in particular fractional statistics [1, 2], in two-dimensional quantum liquids is witnessing a renaissance of interest in present times. The field started more than a quarter of a century ago with the discovery of the fractional quantum Hall effect, which was explained by Laughlin [3] in terms of an incompressible quantum liquid supporting fractionally charged (vortex or) quasiparticle excitations.


Spin Chain Fractional Statistic Read State Ground State Wave Function Fractional Quantum Hall Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F. Wilczek, Fractional Statistics and Anyon Superconductivity (World Scientific, Singapore, 1990)Google Scholar
  2. 2.
    A. Stern, Anyons and the quantum Hall effect—a pedagogical review. Ann. Phys. 323, 204 (2008). January special issue 2008Google Scholar
  3. 3.
    R.B. Laughlin, Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395 (1983)CrossRefADSGoogle Scholar
  4. 4.
    F.D.M. Haldane, Fractional quantization of the Hall effect: a hierarchy of incompressible quantum fluid states. Phys. Rev. Lett. 51, 605 (1983)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    B.I. Halperin, Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52, 1583 (1984)CrossRefADSGoogle Scholar
  6. 6.
    B.I. Halperin, Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52, E2390 (1984)CrossRefADSGoogle Scholar
  7. 7.
    M. Greiter, Microscopic formulation of the hierarchy of quantized Hall states. Phys. Lett. B 336, 48 (1994)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    F. Wilczek, Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957 (1982)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    P.W. Anderson, The resonating valence bond state in \({\hbox{La}}_2{\hbox{CuO}}_{4}\) and superconductivity. Science 235, 1196 (1987)Google Scholar
  10. 10.
    F.C. Zhang, T.M. Rice, Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37, 3759 (1988)CrossRefADSGoogle Scholar
  11. 11.
    H. Eskes, G.A. Sawatzky, Tendency towards local spin compensation of holes in the high-\({T}_{\rm c}\) copper compounds. Phys. Rev. Lett. 61, 1415 (1988)Google Scholar
  12. 12.
    J. Zaanen, S. Chakravarty, T. Senthil, P. Anderson, P. Lee, J. Schmalian, M. Imada, D. Pines, M. Randeria, C. Varma, M. Vojta, M. Rice, Towards a complete theory of high \({T}_{\rm c}\). Nat. Phys. 2, 138 (2006)Google Scholar
  13. 13.
    J. Orenstein, A.J. Millis, Advances in the physics of high-temperature superconductivity. Science 288, 468 (2000)CrossRefADSGoogle Scholar
  14. 14.
    V. Kalmeyer, R.B. Laughlin, Equivalence of the resonating-valence-bond and fractional quantum Hall states. Phys. Rev. Lett. 59, 2095 (1987)CrossRefADSGoogle Scholar
  15. 15.
    V. Kalmeyer, R.B. Laughlin, Theory of the spin liquid state of the heisenberg antiferromagnet. Phys. Rev. B 39, 11879 (1989)CrossRefADSGoogle Scholar
  16. 16.
    D.F. Schroeter, E. Kapit, R. Thomale, M. Greiter, Spin Hamiltonian for which the chiral spin liquid is the exact ground state . Phys. Rev. Lett. 99, 097202 (2007)CrossRefADSGoogle Scholar
  17. 17.
    R. Thomale, E. Kapit, D.F. Schroeter, M. Greiter, Parent Hamiltonian for the chiral spin liquid. Phys. Rev. B 80, 104406 (2009)CrossRefADSGoogle Scholar
  18. 18.
    S.A. Kivelson, D.S. Rokhsar, J.P. Sethna, Topology of the resonating valence-bond state: solitons and high-\(t_{c}\) superconductivity. Phys. Rev. B 35, 8865 (1987)Google Scholar
  19. 19.
    R. Moessner, S.L. Sondhi, Resonating valence bond phase in the triangular lattice quantum dimer model. Phys. Rev. Lett. 86, 1881 (2001)CrossRefADSGoogle Scholar
  20. 20.
    A. Kitaev, Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2 (2006)CrossRefzbMATHADSMathSciNetGoogle Scholar
  21. 21.
    Z.Y. Meng, T.C. Lang, S. Wessel, F.F. Assaad, A. Muramatsu, Quantum spin liquid emerging in two-dimensional correlated Dirac fermions. Nature 464, 847 (2010)CrossRefADSGoogle Scholar
  22. 22.
    F.D.M. Haldane, Exact Jastrow–Gutzwiller resonant-valence-bond ground state of the spin-\(\frac{1}{2}\) antiferromagnetic Heisenberg chain with \(1/r^{2}\) exchange. Phys. Rev. Lett. 60, 635 (1988)Google Scholar
  23. 23.
    B.S. Shastry, Exact solution of an \(S=\frac{1}{2}\) Heisenberg antiferromagnetic chain with long-ranged interactions. Phys. Rev. Lett. 60, 639 (1988)Google Scholar
  24. 24.
    F.D.M. Haldane, Physics of the Ideal Semion Gas: Spinons and Quantum Symmetries of the Integrable Haldane–shastry Spin Chain, ed. by A. Okiji, N. Kawakami. Correlation Effects in Low-Dimensional Electron Systems, (Springer, Berlin, 1994)Google Scholar
  25. 25.
    M. Greiter, D. Schuricht, No attraction between spinons in the Haldane–Shastry model. Phys. Rev. B 71, 224424 (2005)CrossRefADSGoogle Scholar
  26. 26.
    F.D.M. Haldane, Fractional statistics in arbitrary dimensions: a generalization of the Pauli principle. Phys. Rev. Lett. 67, 937 (1991)CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    M. Greiter, D. Schuricht, Comment on spinon attraction in spin-1/2 antiferromagnetic chains. Phys. Rev. Lett. 96, 059701 (2006)CrossRefADSGoogle Scholar
  28. 28.
    M. Greiter, D. Schuricht, Many-spinon states and the secret significance of Young tableaux. Phys. Rev. Lett. 98, 237202 (2007)CrossRefADSGoogle Scholar
  29. 29.
    M. Greiter, Statistical phases and momentum spacings for one-dimesional anyons. Phys. Rev. B 79, 064409 (2009)CrossRefADSGoogle Scholar
  30. 30.
    A. Stern, Non-Abelian states of matter. Nature 464, 187 (2010)CrossRefADSGoogle Scholar
  31. 31.
    A.Y. Kitaev, Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2002)ADSMathSciNetGoogle Scholar
  32. 32.
    C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008)CrossRefzbMATHADSMathSciNetGoogle Scholar
  33. 33.
    G. Moore, N. Read, Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362 (1991)CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    R. Willett, J.P. Eisenstein, H.L. Störmer, D.C. Tsui, A.C. Gossard, J.H. English, Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776 (1987)CrossRefADSGoogle Scholar
  35. 35.
    M. Greiter, X.G. Wen, F. Wilczek, Paired Hall state at half filling. Phys. Rev. Lett. 66, 3205 (1991)CrossRefADSGoogle Scholar
  36. 36.
    M. Greiter, X.G. Wen, F. Wilczek, Paired Hall states. Nucl. Phys. B 374, 567 (1992)CrossRefzbMATHADSMathSciNetGoogle Scholar
  37. 37.
    M. Dolev, M. Heiblum, V. Umansky, A. Stern, D. Mahalu, Observation of a quarter of an electron charge at the \(\nu=5/2\) quantum Hall state. Nature 452, 829 (2008)Google Scholar
  38. 38.
    I.P. Radu, J.B. Miller, C.M. Marcus, M.A. Kastner, L.N. Pfeiffer, K.W. West, Quasi-particle properties from tunneling in the \(\nu = 5/2\) fractional quantum Hall state. Science 320, 899 (2008)Google Scholar
  39. 39.
    N. Read, D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267 (2000)CrossRefADSGoogle Scholar
  40. 40.
    C. Nayak, F. Wilczek, \(2n\)-quasihole states realize \(2^{n-1}\)-dimensional spinor braiding statistics in paired quantum Hall states. Nucl. Phys. B 479, 529 (1996)Google Scholar
  41. 41.
    D.A. Ivanov, Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268 (2001)CrossRefADSGoogle Scholar
  42. 42.
    A. Stern, von F. Oppen, E. Mariani, Geometric phases and quantum entanglement as building blocks for non-Abelian quasiparticle statistics. Phys. Rev. B 70, 205338 (2004)CrossRefADSGoogle Scholar
  43. 43.
    M.H. Freedman, A. Kitaev, Z. Wang, Simulation of topological field theories by quantum computer. Comm. Math. Phys. 227, 587 (2002)CrossRefzbMATHADSMathSciNetGoogle Scholar
  44. 44.
    S. Das Sarma, M. Freedman, C. Nayak, Topologically-protected qubits from a possible non-Abelian fractional quantum Hall state. Phys. Rev. Lett. 94, 166802 (2005)CrossRefADSGoogle Scholar
  45. 45.
    W. Bishara, P. Bonderson, C. Nayak, K. Shtengel, J.K. Slingerland, Interferometric signature of non-Abelian anyons. Phys. Rev. B 80, 155303 (2009)CrossRefADSGoogle Scholar
  46. 46.
    J.E. Moore, Quasiparticles do the twist. Physics 2, 82 (2009)CrossRefGoogle Scholar
  47. 47.
    M. Greiter, Root configurations and many body interactions for fractionally quantized Hall states. Bull. Am. Phys. Soc. 38, 137 (1993)Google Scholar
  48. 48.
    S.H. Simon, E.H. Rezayi, N.R. Cooper, I. Berdnikov, Construction of a paired wave function for spinless electrons at filling fraction \(\nu=2/5\). Phys. Rev. B 75, 075317 (2007)Google Scholar
  49. 49.
    B.A. Bernevig, F.D.M. Haldane, Model fractional quantum Hall states and Jack polynomials. Phys. Rev. Lett. 100, 246802 (2008)CrossRefADSGoogle Scholar
  50. 50.
    N. Read, E. Rezayi, Beyond paired quantum Hall states: parafermions and incompressible states in the first excited Landau level. Phys. Rev. B 59, 8084 (1999)CrossRefADSGoogle Scholar
  51. 51.
    D. Yoshioka, B.I. Halperin, P.A. Lee, Ground state of two-dimensional electrons in strong magnetic fields and \(\frac{1}{3}\) quantized Hall effect. Phys. Rev. Lett. 50, 1219 (1983)Google Scholar
  52. 52.
    M. Greiter, R. Thomale, Non-Abelian statistics in a quantum antiferromagnet. Phys. Rev. Lett. 102, 207203 (2009)CrossRefADSGoogle Scholar
  53. 53.
    M. Greiter, spin liquids: broken discrete symmetries restored. J. Low Temp. Phys. 126, 1029 (2002)Google Scholar
  54. 54.
    B. Scharfenberger, M. Greiter, manuscript in preparationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für Theorie der Kondensierten Materie (TKM)Karlsruhe Institut für Technologie (KIT)KarlsruheGermany

Personalised recommendations