Skip to main content

Efficient Loop Navigation for Symbolic Execution

  • Conference paper
Automated Technology for Verification and Analysis (ATVA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6996))

Abstract

Symbolic execution is a successful technique used in software verification and testing. A key limitation of symbolic execution is in dealing with code containing loops. We introduce a technique which, given a start location above some loops and a target location anywhere below these loops, returns a feasible path between these two locations, if such a path exists. The technique infers a collection of constraint systems from the program and uses them to steer the symbolic execution towards the target. On reaching a loop it iteratively solves the appropriate constraint system to find out which path through this loop to take, or, alternatively, whether to continue below the loop. To construct the constraint systems we express the values of variables modified in a loop as functions of the number of times a given path through the loop was executed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anand, S., Godefroid, P., Tillmann, N.: Demand-driven compositional symbolic execution. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 367–381. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Boonstoppel, P., Cadar, C., Engler, D.: RWset: Attacking path explosion in constraint-based test generation. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 351–366. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation of high-coverage tests for complex systems programs. In: OSDI 2008, pp. 209–224. USENIX Association (2008)

    Google Scholar 

  4. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: POPL 1978, pp. 84–96. ACM, New York (1978)

    Google Scholar 

  5. Godefroid, P.: Compositional dynamic test generation. In: POPL 2007, pp. 47–54. ACM, New York (2007)

    Google Scholar 

  6. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing. In: PLDI 2005, pp. 213–223. ACM, New York (2005)

    Google Scholar 

  7. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In: Network Distributed Security Symposium (NDSS), pp. 151–166 (2008)

    Google Scholar 

  8. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.D.: Compositional must program analysis: unleashing the power of alternation. In: POPL 2010, pp. 43–56. ACM, New York (2010)

    Google Scholar 

  9. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: SYNERGY: a new algorithm for property checking. In: SIGSOFT 2006/FSE-14, pp. 117–127. ACM, New York (2006)

    Chapter  Google Scholar 

  10. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving. In: PLDI 2008, pp. 281–292. ACM, New York (2008)

    Google Scholar 

  11. Karr, M.: Affine relationships among variables of a program. Acta Informatica 6, 133–151 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nori, A.V., Rajamani, S.K., Tetali, S., Thakur, A.V.: The Yogi project: Software property checking via static analysis and testing. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 178–181. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Obdržálek, J., Trtík, M.: Efficient loop navigation for symbolic execution. arXiv:1107.1398v1 [cs.PL] (2011)

    Google Scholar 

  14. Saxena, P., Poosankam, P., McCamant, S., Song, D.: Loop-extended symbolic execution on binary programs. In: ISSTA 2009, pp. 225–236. ACM, New York (2009)

    Google Scholar 

  15. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In: ESEC/FSE-13, pp. 263–272. ACM, New York (2005)

    Chapter  Google Scholar 

  16. Tillmann, N., de Halleux, J.: Pex – white box test generation for .NET. In: Beckert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Obdržálek, J., Trtík, M. (2011). Efficient Loop Navigation for Symbolic Execution. In: Bultan, T., Hsiung, PA. (eds) Automated Technology for Verification and Analysis. ATVA 2011. Lecture Notes in Computer Science, vol 6996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24372-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24372-1_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24371-4

  • Online ISBN: 978-3-642-24372-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics