Advertisement

Grid Data Mining for Outcome Prediction in Intensive Care Medicine

  • Manuel Filipe Santos
  • Wesley Mathew
  • Carlos Filipe Portela
Part of the Communications in Computer and Information Science book series (CCIS, volume 221)

Abstract

This paper introduces a distributed data mining approach suited to grid computing environments based on a supervised learning classifier system. Specific Classifier and Majority Voting methods for Distributed Data Mining (DDM) are explored and compared with the Centralized Data Mining (CDM) approach. Experimental tests were conducted considering a real world data set from the intensive care medicine in order to predict the outcome of the patients. The results demonstrate that the performance of the DDM methods are better than the CDM method.

Keywords

Intensive Care Medicine Outcome Prediction Grid Data Mining Distributed Data Mining Centralized Data Mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Santos, M.F., Mathew, W., Kovacs, T., Santos, H.: A grid data mining architecture for learning classifier system. WSEAS Transactions on Computers 8 (2009) ISSN: 1109-2750Google Scholar
  2. 2.
    Santos, M.F.: Learning Classifier System in Distributed environments, University of Minho School of Engineering Department of Information System. PhD Thesis work (1999) Google Scholar
  3. 3.
    Giani: Parallel Cooperative classifier system. Dottorato di ricerca in informatica Universita di Pisa, PhD Thesis TD-4/ 99 (1999) Google Scholar
  4. 4.
  5. 5.
    Cannataro, M., Congiusta, A., Pugliese, A., Talia, D., Trunfio, P.: Distributed Data Mining on Grid: Services, Tools, and Applications. IEEE Transactions on System, Man, and Cybernetics- Part B: Cybetnetics 34(6) (December 2004)Google Scholar
  6. 6.
    Luo, J., Wang, M., Hu, J., Shi, Z.: Distributed data mining on Agent Grid: Issues, Platform and development toolkit. Future Generation Computer System 23, 61–68 (2007)CrossRefGoogle Scholar
  7. 7.
    Santos, M.F., Portela, F., Vilas-Boas, M., Machado, J., Abelha, A., Neves, J.: INTCARE - Multi-agent approach for real-time Intelligent Decision Support in Intensive Medicine. In: 3rd International Conference on Agents and Artificial Intelligence (ICAART). Springer, Rome (2011) Google Scholar
  8. 8.
    Gago, P., Santos, M.F., Silva, Á., Cortez, P., Neves, J., Gomes, L.: INTCare: a knowledge discovery based intelligent decision support system for intensive care medicine. Journal of Decision Systems (2006) Google Scholar
  9. 9.
    Suter, P., Armaganidis, A., Beaufils, F., Bonfill, X., Burchardi, H., Cook, D., Fagot-Largeault, A., Thijs, L., Vesconi, S., Williams, A.: Predicting outcome in ICU patients. Intensive Care Medicine 20, 390–397 (1994)CrossRefGoogle Scholar
  10. 10.
    Hall, J.B., Schmidt, G.A., Wood, L.D.H.: Principles of Critical Care. McGraw-Hill’s Access Medicine (2005) Google Scholar
  11. 11.
    Silva, Á.: Modelos de Inteligência Artificial na análise da monitorização de eventos clínicos adversos, Disfunção/Falência de órgãos e prognóstico do doente critico. Ciências Médicas, vol. Doutoramento, p. 281. Universidade do Porto, Porto (2007) Google Scholar
  12. 12.
    Le Gall, J.R., Lemeshow, S., Saulnier, F.: A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 270, 2957–2963 (1993)CrossRefGoogle Scholar
  13. 13.
    Vilas-Boas, M., Santos, M.F., Portela, F., Silva, Á., Rua, F.: Hourly prediction of organ failure and outcome in intensive care based on data mining techniques. In: Springer (ed.) 12th International Conference on Enterprise Information Systems, Funchal, Madeira, Portugal, p. 9 (2010) Google Scholar
  14. 14.
    Silva, Á., Pereira, J., Santos, M., Gomes, L., Neves, J.: Organ failure prediction based on clinical adverse events: a cluster model approach. In: Conference Organ Failure Prediction Based on Clinical Adverse Events: a Cluster Model Approach. ACTA Press (Year) Google Scholar
  15. 15.
    Silva, Á., Cortez, P., Santos, M.F., Gomes, L., Neves, J.: Rating organ failure via adverse events using data mining in the intensive care unit. Artificial Intelligence in Medicine 43, 179–193 (2008)CrossRefGoogle Scholar
  16. 16.
    Luo, J., Wang, M., Hu, J., Shi, Z.: Distributed data mining on Agent Grid: Issues, Platform and development toolkit. Future Generation Computer System 23, 61–68 (2007)CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Dam, H.H.: A scalable Evolutionary Learning Classifier System for Knowledge Discovery in Stream Data Mining, M.Sci. University of Western Australia, Australia, B.Sci. (Hons) Curtin University of Technology, Australia. Thesis work (2008)Google Scholar
  19. 19.
    Orriols-Puig: A Further Look at UCS Classifier System. In: GECCO 2006, Seattle, Washington, USA (July 8-12, 2006) Google Scholar
  20. 20.
    Santos, M.F., Mathew, W., Santos, H.: GridClass: Strategies for Global Vs Centralized Model Construction in Grid Data Mining. In: Proceeding of the Workshop on ECAI, Lisbon (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Manuel Filipe Santos
    • 1
  • Wesley Mathew
    • 1
  • Carlos Filipe Portela
    • 1
  1. 1.Centro Algoritmi, Dep. Sistemas de InformaçãoUniversidade do MinhoPortugal

Personalised recommendations