Advertisement

Evaluation of the Inter-observer Cardiac Chamber Contour Extraction versus a Level Set Algorithm

  • Diogo Roxo
  • José Silvestre Silva
  • Jaime B. Santos
  • Paula Martins
  • Eduardo Castela
  • Rui Martins
Part of the Communications in Computer and Information Science book series (CCIS, volume 221)

Abstract

Segmentation of echocardiography images presents a great challenge because these images contain strong speckle noise and artifacts. Besides, most ultrasound segmentation methods are semi-automatic, requiring initial contour to be manually identified in the images. In this work, a level set algorithm based on the phase symmetry approach and on a new logarithmic based stopping function is used to extract simultaneously the four heart cavities in a fully automatic way. Then, those contours are compared with the ones obtained by four physicians to evaluate the performance, reliability and confidence for eventual clinical practice. That algorithm evaluation versus clinicians’ performance is made using several metrics, namely Similarity Region, Hausdorff distance, Accuracy, Overlap, Sensitivity, and Specificity. We show that the proposed algorithm performs well, producing contours very similar to the physicians’ ones with the advantage of being an automatic segmentation technique. The experimental work was based on echocardiography images of children.

Keywords

heart segmentation echocardiographic images phase symmetry level set similarity index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Szabo, T.L.: Diagnostic Ultrasound Imaging: Inside out. Elsevier Academic Press (2004)Google Scholar
  2. 2.
    Noble, J.A.: Ultrasound image segmentation and tissue characterization. Institution of Mechanical Engineers, part H: Journal of Engineering in Medicine 224, 307–316 (2010)CrossRefGoogle Scholar
  3. 3.
    Binder, T.: Three-Dimensional Echocardiography - Principles and Promises. Journal of Clinical and Basic Cardiology 5, 149–152 (2002)Google Scholar
  4. 4.
    Lang, R.M., Mor-Avi, V., Dent, J.M., et al.: Three-Dimensional Echocardiography: Is it Ready for Everyday Clinical Use? Journal of the American College of Cardiology 2, 114–117 (2009)CrossRefGoogle Scholar
  5. 5.
    Suri, J.S., Setarehdan, S.K., Singh, S.: Advanced algorithmic approaches to medical image segmentation: state-of-the-art application in cardiology, neurology, mammography and pathology. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Jacob, G., Noble, J.A., Behrenbruch, C., et al.: A shape-space-based approach to tracking myocardial borders and quantifying regional left-ventricular function applied in echocardiography. IEEE Transactions on Medical Imaging 21, 226–238 (2002)CrossRefGoogle Scholar
  7. 7.
    Noble, J.A., Boukerroui, D.: Ultrasound Image Segmentation: A Survey. IEEE Transactions on Medical Imaging 25, 987–1010 (2006)CrossRefGoogle Scholar
  8. 8.
    Bosh, J.G., Mitchell, S.C., Lelieveldt, B.P.F., et al.: Automatic Segmentation of Echocardiographic Sequences by Active Appearance Motion Models. IEEE Transations on Medical Imaging 21, 1374–1383 (2002)CrossRefGoogle Scholar
  9. 9.
    Antunes, S.G., Silva, J.S., Santos, J.B.: A New Level Set Based Segmentation Method for the Four Cardiac Chambers. In: V Iberian Conference on Information Systems and Technologies, Santiago de Compostela, Spain, vol. 1, pp. 173–178 (2010)Google Scholar
  10. 10.
    Antunes, S.G., Silva, J.S., Santos, J.B.: A Level Set Segmentation Method of the Four Heart Cavities in Pediatric Ultrasound Images. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010, Part II. LNCS, vol. 6112, pp. 99–107. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Santos, J.B., Celorico, D., Varandas, J., et al.: Medical interface for echographic free-hand images. International Journal for Computational Vision and Biomechanics, 33–39 (2010) Google Scholar
  12. 12.
    Silva, J.S., Santos, B.S., Silva, A., et al.: A Level-Set Based Volumetric CT Segmentation Technique: A Case Study with Pulmonary Air Bubbles. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 68–75. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Silva, J.S., Silva, A., Santos, B.S., et al.: Detection and 3D representation of pulmonary air bubbles in HRCT volumes. In: SPIE Medical Imaging 2003: Physiology and Function: Methods, Systems, and Applications, USA, vol. 5031, pp. 430–439 (2003)Google Scholar
  14. 14.
    Silva, J.S., Cancela, J., Teixeira, L.: Intra-Patient Registration Methods for Thoracic CT Exams. In: Second International Conference on Bio-inspired System and Signal Processing, Porto, Portugal, pp. 285–290 (2009)Google Scholar
  15. 15.
    Silva, J.S., Silva, A., Santos, B.S.: Image denoising methods for tumor discrimination in high resolution computed tomography. Journal of Digital Imaging 24, 464–469 (2011)CrossRefGoogle Scholar
  16. 16.
    Silva, J.S., Cancela, J., Teixeira, L.: Fast Volumetric Registration Method for Tumor Follow-Up in Pulmonary CT Exams. Journal of Applied Clinical Medical Physics 12, 362–375 (2011)Google Scholar
  17. 17.
    Cancela, J., Silva, J.S., Teixeira, L.: Fast Intra-Patient 3D Registration Method for Pulmonary CT Exams. In: 3rd Iberian Conference in Systems and Information Technologies, Vigo, Spain, vol. 1, pp. 539–543 (2008)Google Scholar
  18. 18.
    Silva, J.S., Silva, A., Santos, B.S.: A volumetric pulmonary CT segmentation method with applications in emphysema assessment. In: SPIE Medical Imaging 2006: Physiology, Function, and Structure from Medical Images, vol. 6143, pp. 885–896 (2006)Google Scholar
  19. 19.
    Ferreira, A., Morgado, A.M., Silva, J.S.: Automatic corneal nerves recognition for earlier diagnosis and follow-up of diabetic neuropathy. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010, Part II. LNCS, vol. 6112, pp. 60–69. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Vasconcelos, V., Silva, J.S., Marques, L., et al.: Statistical Textural Features for Classification of Lung Emphysema in CT Images: A comparative study. In: V Iberian Conference on Information Systems and Technologies, Santiago de Compostela, Spain, vol. 1, pp. 496–500 (2010)Google Scholar
  21. 21.
    Ferreira, C., Santos, B.S., Silva, J.S., et al.: Comparison of a Segmentation Algorithm to Six Expert Imagiologists in Detecting Pulmonary Contours on X-ray CT Images. In: SPIE Medical Imaging 2003: Image Perception, Observer Performance and Technology Assessment, vol. 5034, pp. 347–358 (2003) Google Scholar
  22. 22.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1988)CrossRefzbMATHGoogle Scholar
  23. 23.
    Osher, S., Sethian, J.A.: Fronts Propagation with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. Journal of Computational Physics 79, 12–49 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic Active Contours. International Journal of Computer Vision 22, 61–79 (1997)CrossRefzbMATHGoogle Scholar
  25. 25.
    Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape Modeling with Front Propagation: A Level Set Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 158–175 (1995)CrossRefGoogle Scholar
  26. 26.
    Paragios, N., Deriche, R.: Geodesic active regions: A new framework to deal with frame partition problems in computer vision. Journal of Visual Communication and Image Representation 13, 249–268 (2002)CrossRefGoogle Scholar
  27. 27.
    Zhang, Y., Matuszewski, B.J., Shark, L.-K., et al.: Medical Image Segmentation Using New Hybrid Level-Set Method. In: Fifth International Conference Biomedical Visualization: Information Visualization in Medical and Biomedical Informatics, London, UK, pp. 71–76 (2008)Google Scholar
  28. 28.
    Chan, T.F., Vese, L.A.: Active Contours Without Edges. IEEE Transactions on Image Processing 10, 266–277 (2001)CrossRefzbMATHGoogle Scholar
  29. 29.
    Antunes, S.G., Silva, J.S., Santos, J.B., et al.: Phase Symmetry Approach Applied to Children Heart Chambers Segmentation: A Comparative Study. IEEE Transactions on Biomedical Engineering 58, 2264–2271 (2011)CrossRefGoogle Scholar
  30. 30.
    Santos, B.S., Ferreira, C., Silva, J.S., et al.: Quantitative Evaluation of a Pulmonary Contour Segmentation Algorithm in X-ray Computed Tomography Images. Academic Radiology 11, 868–878 (2004)CrossRefGoogle Scholar
  31. 31.
    Silva, A., Silva, J.S., Santos, B.S., et al.: Fast Pulmonary Contour Extraction in X-ray CT Images: A Methodology and Quality Assessment. In: SPIE - Medical Imaging: Physiology and Function from Multidimensional Images, USA, vol. 4321, pp. 216–224 (2001)Google Scholar
  32. 32.
    Lopez, C.A., Fernandez, M.M., Alzola, J.R.: Comments on: A Methodology for Evaluation of Boundary Detection Algorithms on Medical Images. IEEE Transactions on Medical Imaging 23, 658–660 (2004)CrossRefGoogle Scholar
  33. 33.
    Chalana, V., Kim, Y.: A Methodology for Evaluation of Boundary Detection Algorithms on Medical Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 642–652 (1997)Google Scholar
  34. 34.
    Byrd, K.A., Zeng, J., Chouikha, M.: A Validation model for segmentation algorithms of digital mammography images. Journal of Applied Science & Engineering Technology 1, 41–50 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Diogo Roxo
    • 1
  • José Silvestre Silva
    • 1
    • 2
  • Jaime B. Santos
    • 3
  • Paula Martins
    • 4
  • Eduardo Castela
    • 4
  • Rui Martins
    • 5
  1. 1.Department of Physics, FCTUCUniversity of CoimbraPortugal
  2. 2.Instrumentation Center, FCTUCUniversity of CoimbraPortugal
  3. 3.Mechanical Engineering Center, FCTUCUniversity of CoimbraPortugal
  4. 4.Department of Pediatric CardiologyPediatric Hospital of CoimbraPortugal
  5. 5.HUCHospital of University of CoimbraCoimbraPortugal

Personalised recommendations