Skip to main content

Enhanced-Geothermal-Systems (EGS), Hot-Dry-Rock Systeme (HDR), Deep-Heat-Mining (DHM)

  • Chapter
  • First Online:
Geothermie

Zusammenfassung

Mit dem Enhanced-Geothermal-System (EGS) soll der tiefere Untergrund als Wärmequelle zur Stromerzeugung und Wärmegewinnung genutzt werden (Abschn. 4.2). Synonyme sind Hot-Dry-Rock (HDR) oder Deep-Heat-Mining (DHM). Der Begriff HDR stammt aus der Anfangsphase dieser Technologie-Entwicklung, in der man noch von „trockenen“ Verhältnissen in großer Tiefe im kristallinen Grundgebirge, also im Wesentlichen in Graniten und Gneisen, ausging. Alle Tiefbohrungen, auch diejenige auf der Halbinsel Kola mit 12,7 km tiefste Bohrung der Welt, zeigten jedoch, dass die obere Erdkruste zumindest „feucht“, manchmal aber auch „nass“ sein kann. Die obere Erdkruste ist grundsätzlich mehr oder weniger stark geklüftet. Die Klüfte sind teilweise offen; in ihnen zirkuliert ein salinares, oft gasreiches Fluid (Ingebritsen & Manning 1999, Stober & Bucher 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armstead HCH, Tester JW (1987) Heat mining.E. & F. N. Spon, London

    Google Scholar 

  • Baria R, Michelet S, Baumgärtner J, Dyer B, Gerard A, Nicholls J, Hettkamp T, Teza D, Soma N, Asanuma H (2004) Microseismic monitoring of the world largest potential HDR reservoir. Proceedings of the 29th workshop on geothermal reservoir engineering, Stanford University, Stanford, CA

    Google Scholar 

  • Baria RA, Green SP (1989) Microseismics: a key to understanding reservoir growth. In: Baria R (ed) Hot dry rock geothermal energy, Proceedings. Camborne School of Mines International Hot Dry Rock Conference, Camborne School of Mines Redruth, Robertson Scientific Publications, London, pp 363–377

    Google Scholar 

  • Bommer JJ, Oates S, Cepeda JM, Lindholm C, Bird J, Torres R, Marroquin G, Rivas J (2006) Control of hazard due to seismicity induced by a hot fractured rock geothermal project. Eng Geol 83(4):287–306

    Article  Google Scholar 

  • Bucher K, Stober I (2000) The composition of groundwater in the continental crystalline crust. In: Stober I, Bucher K (eds) Hydrogeology in crystalline rocks. Kluwer Academic Publishers, Dordrecht, pp 141–176

    Chapter  Google Scholar 

  • Bucher K, Stober I (2010) Fluids in the upper continental crust. Geofluids 10:241–253. doi:10.1111/j.1468-8123.2010.00279.x

    Google Scholar 

  • Ernst PL (1977) A hydraulic fracturing technique for dry hot rock experiments in a single borehole. Soc Petrol Eng AIME, SPE 6897:7 p, Dallas/Texas

    Google Scholar 

  • Genter A, Keith E, Cuenot N, Fritsch D, Sanjuan B (2010) Contribution to the exploration of deep crystalline fractured reservoir of Soultz of the knowledge of enhanced geothermal systems (EGS). C R Geosci 342:502–516

    Article  Google Scholar 

  • Giardini D (2009) Geothermal quake risks must be faced. Nature 462:848–849

    Article  Google Scholar 

  • Huenges E (ed) (2010) Geothermal energy systems: exploration, development, and utilization. Wiley-VCH Verlag GmbH & Co. KGaA, Berlin, 486 p

    Google Scholar 

  • Ingebritsen SE, Manning CE (1999) Geological implications of a permeability-depth curve for the continental crust. Geology 27:1107–1110

    Article  Google Scholar 

  • Lund JW (2007) Characteristics, Development and utilization of geothermal resources. Geo-Heat Centre Quarterly Bulletin (Klamath Falls, Oregon: Oregon Institute of Technology) 28(2):1–9

    Google Scholar 

  • Pearson C (1981) The relationship between microseismicity and high pore pressures during hydraulic stimulation experiments in low permeability granitic rocks. J Geophys Res 86(B9):7855–7864

    Article  Google Scholar 

  • Pine RJ, Batchelor AS (1984) Downward migration of shearing in jointed rock during hydraulic injections. Int J Rock Mech Min Sci Geomech Abstr 21(5):249–263

    Article  Google Scholar 

  • Portier S, André L, Vuataz F-D (2007) Review on chemical stimulation techniques in oil industry and applications to geothermal systems. Engine, work package 4, 32 p, CREGE, Neuchatel, Switzerland

    Google Scholar 

  • Rybach L (2004) EGS – State of the Art. Tagungsband der 15. Fachtagung der Schweizerischen Vereinigung für Geothermie, Basel

    Google Scholar 

  • Schädel K, Dietrich H-G (1979) Results of the fracture experiments at the geothermal research borehole Urach 3. In: Haenel R (ed) The Urach Geothermal Projekt (Swabian Alb, Germany), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 323–344

    Google Scholar 

  • Shapiro SA, Dinske C (2009) Fluid-induced seismicity: pressure diffusion and hydraulic fracturing. Geophys Prospect 57:301–310

    Article  Google Scholar 

  • Smith MC, Aamodt RL, Potter RM, Brown DW (1975) Man-made geothermal reservoirs. Proc UN Geothermal Symp 3:1,781–1,787

    Google Scholar 

  • Stober I (1986) Strömungsverhalten in Festgesteinsaquiferen mit Hilfe von Pump- und Injektionsversuchen (The Flow Behaviour of Groundwater in Hard-Rock Aquifers – Results of Pumping and Injection Tests). Geologisches Jahrbuch, Reihe C, 42, 204 p

    Google Scholar 

  • Stober I (2011) Depth- and pressure-dependent permeability in the upper continental crust: data from the Urach 3 geothermal borehole, southwest Germany. Hydrogeol J 19:685–699. doi:10.1007/s10040-011-0704-7

    Article  Google Scholar 

  • Stober I, Bucher K (2007) Hydraulic properties of the crystalline basement. Hydrogeol J 15:213–224

    Article  Google Scholar 

  • Stober I, Fritzer T, Obst K, Schulz R (2009) Nutungsmöglichkeiten der Tiefen Geothermie in Deutschland. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, 73 S, Berlin

    Google Scholar 

  • TAB (2003) Möglichkeiten geothermischer Stromerzeugung in Deutschland. TAB-Arbeitsbericht Nr. 84, Deutscher Bundestag, Ausschuss für Bildung, Forschung und Technikfolgenabschätzung, 126 S, Berlin

    Google Scholar 

  • Tischner T, Pfender M, Teza D (2006) Hot Dry Rock Projekt Soultz: Erste Phase der Erstellung einer wissenschaftlichen Pilotanlage. Abschlußbericht zum Vorhaben 0327097, Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), 85 S, Hannover

    Google Scholar 

  • Tischner T, Schindler M, Jung R, Nami P (2007) HDR Project Soultz: Hydraulic and seismic observations during stimulation of the 3 deep wells by massiv water injections. Proceedings, 32nd workshop on geothermal engineering, Stanford University, Stanford, CA, 7 p

    Google Scholar 

  • Batchelor AS (1977) Brief summary of some geothermal related studies in the United Kingdom. 2nd NATO/CCMS Geothermal Conference, Los Alamos, NM, 22 24 Jun, Section 1.21, pp 27–29

    Google Scholar 

  • Bencic A (2005) Hydraulic fracturing of the Rotliegend Sst. in N-Germany – Technology, Company History and Strategic Importance. SPE Technology Transfer Workshop, Suco, Zeit Bay Field

    Google Scholar 

  • Brown DW (2009) Hot dry rock geothermal energy: important lessons from Fenton Hill. Proceedings, 34th workshop on geothermal reservoir engineering, Stanford University, Stanford, CA, 4 p

    Google Scholar 

  • Dash ZV, Murphy HD, Cremer GM (eds) (1981) Hot dry rock geothermal reservoir testing: 1978 to 1980. Los Alamos National Laboratory Report LA-9080-SR

    Google Scholar 

  • Duchane D, Brown D (2002) Hot Dry Rock (HDR) geothermal energy research and development at Fenton Hill, New Mexico. GHC Bulletin 13–19

    Google Scholar 

  • Duffield RB, Nunz GJ, Smith MC, Wilson MG (1981) Hot dry rock, geothermal energy development program. Annual Report FY80, Los Alamos National Laboratory Report, LA-8855-HDR, 211 pp

    Google Scholar 

  • Kappelmeyer O, Rummel F (1980) Investigations on an artificially created frac in a shallow and low permeable environment. Proceedings, 2nd international seminar on the results of EC geothermal energy research, Strasbourg, pp 1048–1053

    Google Scholar 

  • MIT (2007) The Future of Geothermal Energy, Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century. Massachusetts Institute of Technology USA (http://geothermal.inel.gov)

  • Nicholson C, Wesson RL (1990) Earthquake Hazard associated with deep well injection – a report to the U.S. Environmental Protection Agency. U.S. Geological Survey Bulletin 1951, 74 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Stober .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stober, I., Bucher, K. (2012). Enhanced-Geothermal-Systems (EGS), Hot-Dry-Rock Systeme (HDR), Deep-Heat-Mining (DHM). In: Geothermie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24331-8_9

Download citation

Publish with us

Policies and ethics