Skip to main content

Hydrochemische Untersuchungen

  • Chapter
  • First Online:
Geothermie

Zusammenfassung

Thermales Tiefenwasser spiegelt die Herkunft, die Zirkulationsdauer und die Wechselwirkungen mit dem Umgebungsgestein wieder. Die meisten Tiefenwässer weisen eine erhöhte Mineralisation und Gasgehalte auf. Um Aussagen zu den Eigenschaften des geförderten Thermalwassers und den möglichen Auswirkungen zu treffen, ist die genaue Kenntnis der Inhaltsstoffe eine grundlegende Voraussetzung für den erfolgreichen Langzeitbetrieb der geothermischen Anlage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnórsson S (1983) Chemical equilibria in Iceland geothermal systems. Implications for chemical geothermometry investigations. Geothermics 24:603–629

    Article  Google Scholar 

  • Arnórsson S, Bjarnason JÖ, Giroud N, Gunnarsson I, Stefánsson A (2006) Sampling and analysis of geothermal fluids. Geofluids6:203–216

    Google Scholar 

  • Drever JI (1997) The geochemistry of natural waters, 3rd edn. Prentice Hall, Upper Saddle River, NJ, 436 p

    Google Scholar 

  • Drever JI (2005) Water, weathering, and soil. Elsevier, Oxford, UK, 626 p

    Google Scholar 

  • DVWK (1987) Erkundung tiefer Grundwasserzirkulationssysteme. DVWK-Schriften 81, 223 S, Paul Paray Verlag, Hamburg, Berlin

    Google Scholar 

  • DVWK Regeln 128 (1992) Entnahme und Untersuchungsumfang von Grundwasserproben. DVWK Regeln zur Wasserwirtschaft, 36 S, Hamburg & Berlin (Paul Parey)

    Google Scholar 

  • Ehinger S, Seifert J, Kassahun A, Schmalz L, Hoth N, Schlömann M (2009) Predominance of Methanolobus spp. and Methanoculleus spp. in the archaeal communities of saline gas field formation fluids. Geomicrobiol J 26:326–338

    Article  Google Scholar 

  • Enerchange (2009) Entwicklung von Niedrig-Enthalpie-Geothermieprojekten in Deutschland. 5. Internationale Geothermiekonferenz, 46 S, Freiburg

    Google Scholar 

  • Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5:41–50

    Article  Google Scholar 

  • Fournier RO (1981) Application of water geochemistry to geothermal exploration and reservoir engineering. In: Rybach L, Muffler LJP (Hrsg) Geothermal systems: principles and case histories. Wiley & Sons, New York, NY, pp 109–143

    Google Scholar 

  • Fournier RO, White DE, Truesdell AH (1974) Geochemical indicators of subsurface temperature – Part 1, Basic Assumptions. J Res US Geol Survey 2(3):259–262

    Google Scholar 

  • He K, Stober I, Bucher K (1999) Chemical evolution of thermal waters from limestone aquifers of the Southern Upper Rhine Valley. Appl Geochem 14:223–235

    Article  Google Scholar 

  • Hölting B (1989) Hydrogeologie. Enke-Verlag, Stuttgart, 396 S

    Google Scholar 

  • Krauskopf KB (1956) Dissolution and precipitation of silica at low temperatures. Geochim Cosmochim Acta 10:1–26

    Article  Google Scholar 

  • Neubert V (2008) Beanspruchung der Förderrohrtour durch korrosive Gase. VDI-Berichte Nr. 2026, S 123–132, Düsseldorf

    Google Scholar 

  • Nicholson K (1993) Geothermal fluids, chemistry and exploration techniques. Springer-Verlag, Berlin, 263 p

    Book  Google Scholar 

  • Parker LV, Hewitt AD, Jenkins TF (1990) Influence of casing materials on trace-level chemicals in well water. Ground Water Monitoring Rev 10(2):146–156

    Article  Google Scholar 

  • Stober I, Bucher K (1999) Origin of salinity of deep groundwater in Crystalline rocks. Terra Nova 11(4):181–185

    Article  Google Scholar 

  • Stober I, Fritzer T, Obst K, Schulz R (2009) Nutungsmöglichkeiten der Tiefen Geothermie in Deutschland. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, 73 S, Berlin

    Google Scholar 

  • Verma MP (2000) Revised quartz solubility temperature dependence equation along the water-vapor saturation curve. Proceedings World Geothermal Congress, Kyushu-Tohoku, Japan, pp 1927–1932

    Google Scholar 

  • Verma SP, Santoyo E (1997) Improved equations for Na/K, Na/Li, and SiO2 geothermometers by outlier detection and rejection. J Volcanol Geoth Res 79:9–23

    Article  Google Scholar 

  • Vetter A, Vieth A, Mangelsdorf K, Lerm K, Alawi M, Wolfgramm M, Seibt A, Würdemann H (2010) Biogeochemical characterisation of geothermally used groundwater in Germany. World Geothermal Congress 2010, Bali, Indonesien

    Google Scholar 

  • Walther JV, Helgeson HC (1977) Calculation of the thermodynamic properties of aqueous silica and the solubility of quartz and its polymorphs at high pressures and temperatures. Am J Sci 277:1315–1351

    Article  Google Scholar 

  • Ball JW, Jenne EA, Burchard JM (1976) Sampling and preservation techniques for waters in geyers and hot springs, with a section on gas collection by A.H. Truesdell. Workshop on sampling geothermal effluents, 1st, Proceedings, Environmental Protection Agency 600/9-76-011, pp 218–234

    Google Scholar 

  • Blank R, Braunmiller G, Brentle J, Brumme R, Burbaum U, Domke M, Ebert E, Eder F, Franz H, Heidinger M, Hirschberg G, Höllen A, Homuth S, Huenges E, Kleitz A, Knapek E, Kölbel T, Maasewerd P, Mathews T, Menzel H, Michael J, Müller-Wagner C, Orywall P, Pechnig R, Pötter R, Quick H, Reble A, Reiersloh D, Reif T, Rieschel B, Rose F, Sass I, Schindler U, Scholz C, Schröder H, Schulte C, Schulze B-M, Schwabe J, Seifen U, Sperber A, Stober I, Wedewardt M, Weimann T (2010) Tiefe Geothermie. Verband Beratender Ingenieure VBI-Leitfaden, Bd 21, 109 S, Berlin

    Google Scholar 

  • Cunningham KM, Nordstrom DK, Ball JW, Schoonen MAA, Xu Y, DeMonge JM (1998) Water-chemistry and on-site sulfur-speciation data for selected springs in yellowstone national park, Wyoming, 1994–1995. U.S. Department of the Interior, U.S. Geological Survey, Open-File Report 98, Boulder, CO, 40 p

    Google Scholar 

  • DIN EN 14868: Korrosionsschutz metallischer Werkstoffe – Leitfaden für die Ermittlung der Korrosionswahrscheinlichkeit geschlossener Wasser-Zirkulationssysteme; Deutsche Fassung EN 14868:2005. DIN Normen, Februar 2005, 24 S, Berlin

    Google Scholar 

  • Hewitt AD (1989) Leaching of metal pollutants from four well casings used for ground-water monitoring. USA Cold Regions Research and Engineering Laboratory, Special Report 89-32

    Google Scholar 

  • Nordstrom DK, Andrews JN, Carlsson L, Fontes J-C, Fritz P, Moser H, Olsson T (1985) Hydrogeological and hydrogeochemical investigations in boreholes – Final report of the phase I geochemical investigations of the Stripa groundwaters. Technical Report STRIPA Project 85-06, Stockholm

    Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2) – a computer program for speciation, batchreaction, one dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, Water-Resources Investigations Report 99-4259, Denver/Colorado, 312 p

    Google Scholar 

  • Pearson FJ Jr, Balderer W, Loosli HH, Lehmann BE, Matter A, Peters TJ, Schmassmann H, Gautschi A (1991) Applied isotope hydrogeology – a case study in Northern Switzerland. Technical Report 88-01, Nagra, 439 p, Baden/Switzerland

    Google Scholar 

  • Santoyo E, Díaz-González L (2010) Improved proposal of the Na/K-Geothermometer to estimate deep equilibrium temperatures and their uncertainties in geothermal systems. Proceedings World Geothermal Congress, Bali, Indonesia, 7 p

    Google Scholar 

  • Seibt A (2007) Langfristige Betriebsicherheit geothermischer Anlagen, Erarbeitung von Empfehlungen zur Bestimmung betriebsrelevanter Inhaltsstoffe in Thermalwässern an Geothermieanlagen und Förderbohrungen. F/E-Vorhaben, Bundesanstalt für Geowissenschaften und Rohstoffe, Vertr.-Nr.: 204-4500033099, 32 S. Neubrandenburg

    Google Scholar 

  • Thompson JM, Presser TS, Barnes RB, Bird DB (1975) Chemical analysis of the water of Yellowstone National Park, Wyoming from 1965 to 1973. U.S. Geological Survey Open-File Report 75-25, 59 p

    Google Scholar 

  • Thompson JM, Yadav S (1979) Chemical analysis of waters from Geysers, Hot Springs, and Pools in Yellowstone National Park, Wyoming, from 1974 to 1978. U.S. Geological Survey Open-File Report 79-704, 49 p

    Google Scholar 

  • Degering D, Köhler M (2011) Radioaktivität in der tiefen Geothermie – Ursachen und Konsequenzen. Tagungsband Sächsischer Geothermietag, 18.-19. Mai 2011, S 59–64, Freiberg

    Google Scholar 

  • Ellis II PF (1985): Companion study to short course on geothermal corrosion and mitigation in low temperature geothermal heating systems.- The Geo-Heat Center Oregon Institute of Technology, 34 p., DCN 85-212-040-01, Klamath Falls, OR/USA

    Google Scholar 

  • Stober, I. (1995): Die Wasserführung des kristallinen Grundgebirges.- Ferdinand Enke Verlag, 81 Abb., 16 Tab., 191 S., Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Stober .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stober, I., Bucher, K. (2012). Hydrochemische Untersuchungen. In: Geothermie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24331-8_14

Download citation

Publish with us

Policies and ethics