A Locally Deformable Statistical Shape Model

  • Carsten Last
  • Simon Winkelbach
  • Friedrich M. Wahl
  • Klaus W. G. Eichhorn
  • Friedrich Bootz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7009)


Statistical shape models are one of the most powerful methods in medical image segmentation problems. However, if the task is to segment complex structures, they are often too constrained to capture the full amount of anatomical variation. This is due to the fact that the number of training samples is limited in general, because generating hand-segmented reference data is a tedious and time-consuming task. To circumvent this problem, we present a Locally Deformable Statistical Shape Model that is able to segment complex structures with only a few training samples at hand. This is achieved by allowing a unique solution in each contour point. Unlike previous approaches, trying to tackle this problem by partitioning the statistical model, we do not need predefined segments. Smoothness constraints ensure that the local solution is restricted to the space of feasible shapes. Very promising results are obtained when we compare our new approach to a global fitting approach.


Segmentation Result Target Function Shape Model Point Correspondence Contour Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amberg, M., Lüthi, M., Vetter, T.: Local regression based statistical model fitting. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 452–461. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Bronshtein, I., Semendyayev, K., Musiol, G., Mühlig, H.: Handbook of Mathematics, 5th edn. Springer, New York (2007)zbMATHGoogle Scholar
  3. 3.
    de Bruijne, M., van Ginneken, B., Viergever, M.A., Niessen, W.J.: Adapting active shape models for 3D segmentation of tubular structures in medical images. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 136–147. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Cootes, T., Taylor, C.: Combining point distribution models with shape models based on finite element analysis. Image and Vision Comput. 13(5), 403–409 (1995)CrossRefGoogle Scholar
  5. 5.
    Cootes, T., Taylor, C.: Data driven refinement of active shape model search. In: Proceedings of the British Machine Vision Conference, pp. 383–392 (1996)Google Scholar
  6. 6.
    Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models - their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)CrossRefGoogle Scholar
  7. 7.
    Davatzikos, C., Tao, X., Shen, D.: Hierarchical active shape models, using the wavelet transform. IEEE Transactions on Medical Imaging 22(3), 414–423 (2003)CrossRefGoogle Scholar
  8. 8.
    Gibbons, J., Chakraborti, S.: Nonparametric Statistical Inference, 5th edn. CRC Press, Boca Raton (2010)zbMATHGoogle Scholar
  9. 9.
    Heimann, T., Meinzer, H.: Statistical shape models for 3d medical image segmentation: A review. Medical Image Analysis 13(4), 543–563 (2009)CrossRefGoogle Scholar
  10. 10.
    Last, C., Winkelbach, S., Wahl, F., Eichhorn, K., Bootz, F.: A model-based approach to the segmentation of nasal cavity and paranasal sinus boundaries. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 333–342. Springer, Heidelberg (2010)Google Scholar
  11. 11.
    Leventon, M., Grimson, W., Faugeras, O.: Statistical shape influence in geodesic active contours. In: Proc. of CVPR. pp. 316–323 (2000)Google Scholar
  12. 12.
    Lötjönen, J., Antila, K., Lamminmäki, E., Koikkalainen, J., Lilja, M., Cootes, T.F.: Artificial enlargement of a training set for statistical shape models: Application to cardiac images. In: Frangi, A., Radeva, P., Santos, A., Hernandez, M. (eds.) FIMH 2005. LNCS, vol. 3504, pp. 92–101. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Nain, D., Haker, S., Bobick, A., Tannenbaum, A.: Multiscale 3-d shape representation and segmentation using spherical wavelets. IEEE Transactions on Medical Imaging 26(4), 598–618 (2007)CrossRefGoogle Scholar
  14. 14.
    Nelder, J., Mead, R.: A simplex method for function minimization. The Computer Journal 7(4), 308–313 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rilk, M., Wahl, F., Eichhorn, K., Wagner, I., Bootz, F.: Path planning for robot-guided endoscopes in deformable environments. In: Kröger, T., Wahl, F. (eds.) Advances in Robotics Research, pp. 263–274. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Shang, Y., Dössel, O.: Statistical 3d shape-model guided segmentation of cardiac images. In: Computers in Cardiology, vol. 31, pp. 553–556 (2004)Google Scholar
  17. 17.
    Shen, D., Herskovits, E., Davatzikos, C.: An adaptive-focus statistical shape model for segmentation and shape modeling of 3-d brain structures. IEEE Transactions on Medical Imaging 20(4), 257–270 (2001)CrossRefGoogle Scholar
  18. 18.
    Tsai, A., Yezzi Jr., A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W., Willsky, A.: A shape-based approach to the segmentation of medical imagery using level sets. IEEE Transactions on Medical Imaging 22(2), 137–154 (2003)CrossRefGoogle Scholar
  19. 19.
    Weese, J., Kaus, M., Lorenz, C., Lobregt, S., Truyen, R., Pekar, V.: Shape constrained deformable models for 3D medical image segmentation. In: Insana, M., Leahy, R. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 380–387. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Zhao, Z., Aylward, S., Teoh, E.: A novel 3D partitioned active shape model for segmentation of brain MR images. In: Duncan, J., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 221–228. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Carsten Last
    • 1
  • Simon Winkelbach
    • 1
  • Friedrich M. Wahl
    • 1
  • Klaus W. G. Eichhorn
    • 2
  • Friedrich Bootz
    • 2
  1. 1.Institut fuer Robotik und ProzessinformatikTU BraunschweigGermany
  2. 2.Klinik und Poliklinik fuer HNO-Heilkunde/ChirurgieUKB BonnGermany

Personalised recommendations