Advertisement

Multi-Kernel Classification for Integration of Clinical and Imaging Data: Application to Prediction of Cognitive Decline in Older Adults

  • Roman Filipovych
  • Susan M. Resnick
  • Christos Davatzikos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7009)

Abstract

Diagnosis of neurologic and neuropsychiatric disorders typically involves considerable assessment including clinical observation, neuroimaging, and biological and neuropsychological measurements. While it is reasonable to expect that the integration of neuroimaging data and complementary non-imaging measures is likely to improve early diagnosis on individual basis, due to technical challenges associated with the task of combining different data types, medical image pattern recognition analysis has been largely focusing solely on neuroimaging evaluations. In this paper, we explore the potential of integrating neuroimaging and clinical information within a pattern classification framework, and propose that the multi-kernel learning (MKL) paradigm may be suitable for building a multimodal classifier of a disorder, as well as for automatic identification of the relevance of each information type. We apply our approach to the problem of detecting cognitive decline in healthy older adults from single-visit evaluations, and show that the performance of a classifier can be improved when nouroimaging and clinical evaluations are used simultaneously within a MKL-based classification framework.

Keywords

Multi-Kernel Learning (MKL) Normal aging MRI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benton, A.: Revised Visual Retention Test. The Psych. Corp., New York (1974)Google Scholar
  2. 2.
    Bouwman, F.H., van der Flier, W.M., Schoonenboom, N.S.M., van Elk, E.J., Kok, A., Rijmen, F., Blankenstein, M.A., Scheltens, P.: Longitudinal changes of CSF biomarkers in memory clinic patients. Neurology 69(10), 1006–1011 (2007)CrossRefGoogle Scholar
  3. 3.
    Davatzikos, C., Genc, A., Xu, D., Resnick, S.M.: Voxel-based morphometry using the ravens maps: methods and validation using simulated longitudinal atrophy. Neuroimage 14(6), 1361–1369 (2001)CrossRefGoogle Scholar
  4. 4.
    Davatzikos, C., Bhatt, P., Shaw, L.M., Batmanghelich, K.N., Trojanowski, J.Q.: Prediction of mci to ad conversion, via mri, csf biomarkers, and pattern classification. Neurobiology of Aging (2010) (in press, corrected proof )Google Scholar
  5. 5.
    Delis, D., Kramer, J., Kaplan, E., Ober, B.: California Verbal Learning Test - Research Edition. The Psychological Corporation, New York (1987)Google Scholar
  6. 6.
    Duchesne, S., Bocti, C., De Sousa, K., Frisoni, G.B., Chertkow, H., Collins, D.L.: Amnestic mci future clinical status prediction using baseline mri features. Neurobiol Aging 31(9), 1606–1617 (2010)CrossRefGoogle Scholar
  7. 7.
    Fan, Y., Batmanghelich, N., Clark, C.M., Davatzikos, C.: Spatial patterns of brain atrophy in mci patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. NeuroImage 39(4), 1731–1743 (2008)CrossRefGoogle Scholar
  8. 8.
    Folstein, M.F., Folstein, S.E., McHugh, P.R.: ”mini-mental state”. a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12(3), 189–198 (1975)CrossRefGoogle Scholar
  9. 9.
    Hinrichs, C., Singh, V., Xu, G., Johnson, S.C.: Predictive markers for ad in a multi-modality framework: An analysis of mci progression in the adni population. NeuroImage 55(2), 574–589 (2011)CrossRefGoogle Scholar
  10. 10.
    Ji, Y., Permanne, B., Sigurdsson, E.M., Holtzman, D.M., Wisniewski, T.: Amyloid beta40/42 clearance across the blood-brain barrier following intra-ventricular injections in wild-type, apoe knock-out and human apoe3 or e4 expressing transgenic mice. J. Alzheimers Dis. 3(1), 23–30 (2001)CrossRefGoogle Scholar
  11. 11.
    Kloppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I., Rohrer, J.D., Fox, N.C., Jack, C.R., Ashburner, J., Frackowiak, R.S.J.: Automatic classification of mr scans in alzheimer’s disease. Brain 131(3), 681–689 (2008)CrossRefGoogle Scholar
  12. 12.
    de Leon, M., Mosconi, L., Li, J., De Santi, S., Yao, Y., Tsui, W., Pirraglia, E., Rich, K., Javier, E., Brys, M., Glodzik, L., Switalski, R., Saint Louis, L., Pratico, D.: Longitudinal csf isoprostane and mri atrophy in the progression to ad. Journal of Neurology 254, 1666–1675 (2007)CrossRefGoogle Scholar
  13. 13.
    Petersen, R., Jack Jr., C.: Imaging and biomarkers in early alzheimer’s disease and mild cognitive impairment. Clin. Pharmacol. Ther. 84(4), 438–441 (2009)CrossRefGoogle Scholar
  14. 14.
    Pham, D.L., Prince, J.L.: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. Med. Imaging 18(9), 737–752 (1999)CrossRefGoogle Scholar
  15. 15.
    Resnick, S.M., Pham, D.L., Kraut, M.A., Zonderman, A.B., Davatzikos, C.: Longitudinal magnetic resonance imaging studies of older adults: A shrinking brain. J. Neurosci. 23(8), 3295–3301 (2003)Google Scholar
  16. 16.
    Shen, D., Davatzikos, C.: Hammer: Hierarchical attribute matching mechanism for elastic registration. IEEE Trans. Med. Imag. 21(11), 1421–1439 (2002)CrossRefGoogle Scholar
  17. 17.
    Sonnenburg, S., Rätsch, G., Henschel, S., Widmer, C., Behr, J., Zien, A., de Bona, F., Binder, A., Gehl, C., Franc, V.: The shogun machine learning toolbox. J. Mach. Learn. Res. 99, 1799–1802 (2010)zbMATHGoogle Scholar
  18. 18.
    Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B.: Large scale multiple kernel learning. J. Mach. Learn. Res. 7, 1531–1565 (2006)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Vapnik, V.N.: The nature of statistical learning theory. Springer-Verlag New York, Inc., New York (1995)CrossRefzbMATHGoogle Scholar
  20. 20.
    Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Multimodal classification of alzheimer’s disease and mild cognitive impairment. NeuroImage 55(3), 856–867 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Roman Filipovych
    • 1
  • Susan M. Resnick
    • 2
  • Christos Davatzikos
    • 1
  1. 1.Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Laboratory of Personality and CognitionBiomedical Research Center/04B317Baltimore

Personalised recommendations