Advertisement

Automated Detection of Major Thoracic Structures with a Novel Online Learning Method

  • Nima Tajbakhsh
  • Hong Wu
  • Wenzhe Xue
  • Jianming Liang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7009)

Abstract

This paper presents a novel on-line learning method for automatically detecting anatomic structures in medical images. Conventional off-line learning requires collecting all representative samples before the commencement of training. Our presented approach eliminates the need for storing historical training samples and is capable of continuously enhancing its performance with new samples. We evaluate our approach with three distinct thoracic structures, demonstrating that our approach yields competing performance to the off-line approach. This demonstrated performance is attributed to our novel on-line learning structure coupled with histogram as weaker learner.

Keywords

Thoracic structure detection on-line learning histogram Kalman filter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grabner, H., Bischof, H.: On-line boosting and vision. In: International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 260–267 (2006)Google Scholar
  2. 2.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511–518 (2001)Google Scholar
  3. 3.
    Liu, D., Zhou, K.S., Bernhardt, D., Comaniciu, D.: Search strategies for multiple landmark detection by submodular maximization. In: CVPR, San Francisco, CA, USA, pp. 2831–2838 (2010)Google Scholar
  4. 4.
    Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression forests for efficient anatomy detection and localization in CT studies. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MICCAI 2010. LNCS, vol. 6533, pp. 106–117. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Sternig, S., Godec, M., Roth, P.M., Bischof, H.: Transientboost: On-line boosting with transient data. In: CVPRW, San Francisco, CA, USA, pp. 22–27 (2010)Google Scholar
  6. 6.
    Liu, X., Yu, T.: Gradient feature selection for online boosting. In: ICCV, Rio de Janeiro, Brazil, p. 18 (2007)Google Scholar
  7. 7.
    Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Fast automatic heart chamber segmentation from 3D CT data using marginal space learning and steerable features. In: ICCV, Rio de Janeiro, Brazil, 8 pages (2007)Google Scholar
  8. 8.
    Zhou, S.K., Zhou, J., Comaniciu, D.: A boosting regression approach to medical anatomy detection. In: CVPR, Minneapolis, MN, USA, pp. 1–8 (2007)Google Scholar
  9. 9.
    Godec, M., Leistner, C., Saffari, A., Bischof, H.: On-line random naive Bayes for tracking. In: ICPR, Istanbul, Turkey, pp. 3545–3548 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nima Tajbakhsh
    • 1
  • Hong Wu
    • 1
  • Wenzhe Xue
    • 1
  • Jianming Liang
    • 1
  1. 1.Biomedical InformaticsArizona State UniversityScottsdaleUSA

Personalised recommendations