Predicting Clinical Scores Using Semi-supervised Multimodal Relevance Vector Regression

  • Bo Cheng
  • Daoqiang Zhang
  • Songcan Chen
  • Dinggang Shen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7009)


We present a novel semi-supervised multimodal relevance vector regression (SM-RVR) method for predicting clinical scores of neurological diseases from multimodal brain images, to help evaluate pathological stage and predict future progression of diseases, e.g., Alzheimer’s diseases (AD). Different from most existing methods, we predict clinical scores from multimodal (imaging and biological) biomarkers, including MRI, FDG-PET, and CSF. Also, since mild cognitive impairment (MCI) subjects generally contain more noises in their clinical scores compared to AD and healthy control (HC) subjects, we use only their multimodal data (i.e., MRI, FDG-PET and CSF), not their clinical scores, to train a semi-supervised model for enhancing the estimation of clinical scores for AD and healthy control (HC). Experimental results on ADNI dataset validate the efficacy of the proposed method.


Mild Cognitive Impairment Mini Mental State Examination Clinical Score Regression Performance Unlabeled Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stonnington, C.M., Chu, C., Klöppel, S., Jack, C.R., Ashburner, J., Frackowiak, R.S.J.: ADNI: Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. NeuroImage 51(4), 1405–1413 (2010)CrossRefGoogle Scholar
  2. 2.
    Wang, Y., Fan, Y., Bhatt, P., Davatzikos, C.: High-dimensional pattern regression using machine learning: From medical images to continuous clinical variables. NeuroImage 50(4), 1519–1535 (2010)CrossRefGoogle Scholar
  3. 3.
    Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: ADNI: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage 55(3), 856–867 (2011)CrossRefGoogle Scholar
  4. 4.
    Fan, Y., Kaufer, D., Shen, D.: Joint estimation of multiple clinical variables of neurological diseases from imaging patterns. In: ISBI, pp. 852–855 (2010)Google Scholar
  5. 5.
    Walhovd, K.B., Fjell, A.M., Amlien, I., Grambaite, R., Stenset, V., Bjørnerud, A., Reinvang, I., Gjerstad, L., Cappelen, T., Due-Tønnessen, P., Fladby, T.: Multimodal imaging in mild cognitive impairment: Metabolism, morphometry and diffusion of the temporal–parietal memory network. NeuroImage 45(1), 215–223 (2009)CrossRefGoogle Scholar
  6. 6.
    Ye, J., Chen, K., Wu, T., Li, J., Zhao, Z., Patel, R., Bae, M., Janardan, R., Liu, H., Alexander, G., Reiman, E.M.: Heterogeneous data fusion for Alzheimer’s disease study. In: KDD 2008, pp. 1025–1033 (2008)Google Scholar
  7. 7.
    Fan, Y., Resnick, S.M., Wu, X., Davatzikos, C.: Structural and functional biomarkers of prodromal Alzheimer’s disease: a high-dimensional pattern classification study. Neuroimage 41, 277–285 (2008)CrossRefGoogle Scholar
  8. 8.
    Fjell, A.M., Walhovd, K.B., Fennema-Notestine, C., McEvoy, L.K., Hagler, D.J., Holland, D., Brewer, J.B., Dale, A.M.: CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease. J. Neurosci. 30, 2088–2101 (2010)CrossRefGoogle Scholar
  9. 9.
    Mosconi, L., Brys, M., Glodzik-Sobanska, L., De Santi, S., Rusinek, H., de Leon, M.J.: Early detection of Alzheimer’s disease using neuroimaging. Exp. Gerontol. 42, 129–138 (2007)CrossRefGoogle Scholar
  10. 10.
    Belkin, M., Niyogi, P., Sindhwani, V.: Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples. Journal of Machine Learning Research 7, 2399–2434 (2006)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Belkin, M., Niyogi, P.: Semi-Supervised Learning on Riemannian Manifolds. Machine Learning 56, 209–239 (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
    Tipping, M.: Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Filipovych, R., Davatzikos, C.: Semi-supervised pattern classification of medical images: Application to mild cognitive impairment (MCI). NeuroImage 55(3), 1109–1119 (2011)CrossRefGoogle Scholar
  14. 14.
    Hinrichs, C., Singh, V., Xu, G., Johnson, S.: MKL for robust multi-modality AD classification. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 786–794. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Zhang, D., Shen, D.: Semi-supervised multimodal classification of Alzheimer’s disease. In: ISBI, 1628–1631 (2011)Google Scholar
  16. 16.
    Shen, D., Davatzikos, C.: HAMMER: Hierarchical attribute matching mechanism for elastic registration. IEEE Transactions on Medical Imaging 21, 1421–1439 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bo Cheng
    • 1
  • Daoqiang Zhang
    • 1
    • 2
  • Songcan Chen
    • 1
  • Dinggang Shen
    • 2
  1. 1.Dept. of Computer Science and EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Dept. of Radiology and BRICUniversity of North CarolinaChapel Hill

Personalised recommendations