Advertisement

Probabilistic Graphical Model of SPECT/MRI

  • Stefano Pedemonte
  • Alexandre Bousse
  • Brian F. Hutton
  • Simon Arridge
  • Sebastien Ourselin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7009)

Abstract

The combination of PET and SPECT with MRI is an area of active research at present time and will enable new biological and pathological analysis tools for clinical applications and pre-clinical research. Image processing and reconstruction in multi-modal PET/MRI and SPECT/MRI poses new algorithmic and computational challenges. We investigate the use of Probabilistic Graphical Models (PGM) to construct a system model and to factorize the complex joint distribution that arises from the combination of the two imaging systems. A joint generative system model based on finite mixtures is proposed and the structural properties of the associated PGM are addressed in order to obtain an iterative algorithm for estimation of activity and multi-modal segmentation. In a SPECT/MRI digital phantom study, the proposed algorithm outperforms a well established method for multi-modal activity estimation in terms of bias/variance characteristics and identification of lesions.

Keywords

Molecular Imaging Emission Tomography Multi-modality Bayesian Networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atre, A., Vunckx, K., Baete, K., Reilhac, A., Nuyts, J.: Evaluation of different MRI-based anatomical priors for PET brain imaging. In: IEEE Nucl. Sci. Sym. Conf., Orlando, pp. 1–7 (October 2009)Google Scholar
  2. 2.
    Leahy, R., Yan, X.: Incorporation of Anatomical MR Data for Improved Functional Imaging with PET. In: Inf. Proc. in Med. Imag., pp. 105–120. Springer, Heidelberg (1991)Google Scholar
  3. 3.
    Scheines, R.: An Introduction to Causal Inference. In: McKim, V., Turner, S. (eds.) Causality in Crisis?, pp. 185–200. University of Notre Dame PressGoogle Scholar
  4. 4.
    Venkataraman, A., Rathi, Y., Kubicki, M., Westin, C.-F., Golland, P.: Joint Generative Model for fMRI/DWI and Its Application to Population Studies. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010 Part I. LNCS, vol. 6361, pp. 191–199. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Hiltunen, P., Prince, S.J.D., Arridge, S.: A combined reconstruction-classification method for diffuse optical tomography. Phys. Med. and Biol. 54, 6457–6476 (2009)CrossRefGoogle Scholar
  6. 6.
    Sastry, S., Carson, R.E.: Multimodality Bayesian algorithm for image reconstruction in positron emission tomography: a tissue composition model. IEEE Trans. on Med. Imag. 16(6), 750–761 (1997)CrossRefGoogle Scholar
  7. 7.
    Rangarajan, A., Hsiao, I.T., Gindi, G.: A Bayesian joint mixture framework for the integration of anatomical information in functional image reconstruction. J. of Math. Imag. and Vis. 12(3), 199–217 (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Blamire, A.M.: The technology of MRI - the next 10 years? The British J. of Radiology 81, 601–617 (2008)CrossRefGoogle Scholar
  9. 9.
    Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Trans. on Med. Imag. 18(10), 897–908 (1999)CrossRefGoogle Scholar
  10. 10.
    Ashburner, J., Friston, K.J.: Unified segmentation. Neuroimage 26(3), 839–851 (2005)CrossRefGoogle Scholar
  11. 11.
    Green, P.G.: Bayesian Reconstructions From Emission Tomography Data Using a Modified EM Algorithm. IEEE Trans. on Med. Imag. 9(1), 84–93 (1990)MathSciNetCrossRefGoogle Scholar
  12. 12.
  13. 13.
    Pedemonte, S., Cardoso, M.J., Bousse, A., Panagiotou, C., Kazantsev, D., Arridge, S., Hutton, B.F., Ourselin, S.: Class conditional entropic prior for MRI enhanced SPECT reconstruction. In: IEEE Nucl. Sci. Sym. Conf., Knoxville, pp. 3292–3300 (November 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Stefano Pedemonte
    • 1
  • Alexandre Bousse
    • 2
  • Brian F. Hutton
    • 2
  • Simon Arridge
    • 1
  • Sebastien Ourselin
    • 1
  1. 1.The Centre for Medial Image ComputingUCLLondonUnited Kingdom
  2. 2.Institute of Nuclear MedicineUCL Hospitals NHS TrustLondonUnited Kingdom

Personalised recommendations