Automatic Segmentation of Vertebrae from Radiographs: A Sample-Driven Active Shape Model Approach

  • Peter Mysling
  • Kersten Petersen
  • Mads Nielsen
  • Martin Lillholm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7009)


Segmentation of vertebral contours is an essential task in the design of automatic tools for vertebral fracture assessment. In this paper, we propose a novel segmentation technique which does not require operator interaction. The proposed technique solves the segmentation problem in a hierarchical manner. In a first phase, a coarse estimate of the overall spine alignment and the vertebra locations is computed using a shape model sampling scheme. These samples are used to initialize a second phase of active shape model search, under a nonlinear model of vertebra appearance. The search is constrained by a conditional shape model, based on the variability of the coarse spine location estimates. The technique is evaluated on a data set of manually annotated lumbar radiographs. The results compare favorably to the previous work in automatic vertebra segmentation, in terms of both segmentation accuracy and failure rate.


Fracture Vertebra Random Forest Automatic Segmentation Segmentation Accuracy Vertebral Fracture Assessment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bagger, Y.Z., Tankó, L.B., Alexandersen, P., Hansen, H.B., Qin, G., Christiansen, C.: The Long-term Predictive Value of Bone Mineral Density Measurements for Fracture Risk is Independent of the Site of Measurement and the Age at Diagnosis: Results from the Prospective Epidemiological Risk Factors Study. Osteoporosis International 17, 471–477 (2006)CrossRefGoogle Scholar
  2. 2.
    Behiels, G., Vandermeulen, D., Maes, F., Suetens, P., Dewaele, P.: Active Shape Model-Based Segmentation of Digital X-ray Images. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 128–137. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 681–685 (2001)CrossRefGoogle Scholar
  5. 5.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Comp. Vision and Image Understanding 61, 38–59 (1995)CrossRefGoogle Scholar
  6. 6.
    de Bruijne, M., Nielsen, M.: Image Segmentation By Shape Particle Filtering. In: ICPR 2004, pp. 722–725. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  7. 7.
    Florack, L., Ter Haar Romeny, B., Viergever, M., Koenderink, J.: The Gaussian Scale-space Paradigm and the Multiscale Local Jet. International Journal of Computer Vision 18, 61–75 (1996)CrossRefGoogle Scholar
  8. 8.
    Gower, J.C.: Generalized Procrustes Analysis. Psychometrika 40, 33–51 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Iglesias, J.E., de Bruijne, M.: Semiautomatic Segmentation of Vertebrae in Lateral X-rays Using a Conditional Shape Model. Acad. Rad. 14, 1156–1165 (2007)CrossRefGoogle Scholar
  10. 10.
    Johansen, A.M., Del Moral, P., Doucet, A.: Sequential Monte Carlo Samplers for Rare Events. Technical Report, Uni. of Cambridge, Dept. of Engineering (2005)Google Scholar
  11. 11.
    Petersen, K., Nielsen, M., Brandt, S.S.: A Static SMC Sampler on Shapes for the Automated Segmentation of Aortic Calcifications. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 666–679. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Roberts, M.G., Cootes, T.F., Adams, J.E.: Automatic Segmentation of Lumbar Vertebrae on Digitised Radiographs Using Linked Active Appearance Models. In: Proc. Medical Image Understanding and Analysis, pp. 120–124 (2006)Google Scholar
  13. 13.
    Roberts, M.G., Cootes, T.F., Adams, J.E.: Vertebral Morphometry: Semiautomatic Determination of Detailed Shape from Dual-energy X-ray Absorptiometry Images Using Active Appearance Models. Investigative Radiology 41, 849–859 (2006)CrossRefGoogle Scholar
  14. 14.
    Roberts, M.G., Cootes, T.F., Pacheco, E., Oh, T., Adams, J.E.: Segmentation of Lumbar Vertebrae Using Part-Based Graphs and Active Appearance Models. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 1017–1024. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Peter Mysling
    • 1
  • Kersten Petersen
    • 1
  • Mads Nielsen
    • 1
    • 2
  • Martin Lillholm
    • 2
  1. 1.DIKU, University of CopenhagenDenmark
  2. 2.BiomedIQRødovreDenmark

Personalised recommendations