Skip to main content

Segmenting Hippocampus from 7.0 Tesla MR Images by Combining Multiple Atlases and Auto-Context Models

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7009))

Included in the following conference series:

Abstract

In investigation of neurological diseases, accurate measurement of hippocampus is very important for differentiating inter-subject difference and subtle longitudinal change. Although many automatic segmentation methods have been developed, their performance can be limited by the poor image contrast of hippocampus in the MR images, acquired from either 1.5T or 3.0T scanner. Recently, the emergence of 7.0T scanner sheds new light on the study of hippocampus by providing much higher contrast and resolution. But the automatic segmentation algorithm for 7.0T images still lags behind the development of high-resolution imaging techniques. In this paper, we present a learning-based algorithm for segmenting hippocampi from 7.0T images, by using multi-atlases technique and auto-context models. Specifically, for each atlas (along with other aligned atlases), Auto-Context Model (ACM) is performed to iteratively construct a sequence of classifiers by integrating both image appearance and context features in the local patch. Since there exist plenty of texture information in 7.0T images, more advanced texture features are also extracted and incorporated into the ACM during the training stage. With the use of multiple atlases, multiple sequences of ACM-based classifiers will be trained, respectively in each atlas’ space. Thus, in the application stage, a new image will be segmented by first applying the sequence of the learned classifiers of each atlas to it, and then fusing multiple segmentation results from multiple atlases (or multiple sequences of classifiers) by a label-fusion technique. Experimental results on the six 7.0T images with voxel size of 0.35×0.35×0.35mm 3 show much better results obtained by our method than by the method using only the conventional auto-context model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhou, J., Rajapakse, J.C.: Segmentation of subcortical brain structures using fuzzy templates. NeuroImage 28, 915–924 (2005)

    Article  Google Scholar 

  2. Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage 54, 940–954 (2011)

    Article  Google Scholar 

  3. Khan, A.R., Wang, L., Beg, M.F.: FreeSurfer-initiated fully-automated subcortical brain segmentation in MRI using Large Deformation Diffeomorphic Metric Mapping. NeuroImage 41, 735–746 (2008)

    Article  Google Scholar 

  4. Chupin, M., Hammers, A., Liu, R.S.N., Colliot, O., Burdett, J., Bardinet, E., Duncan, J.S., Garnero, L., Lemieux, L.: Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: Method and validation. NeuroImage 46, 749–761 (2009)

    Article  Google Scholar 

  5. van der Lijn, F., den Heijer, T., Breteler, M.M.B., Niessen, W.J.: Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts. NeuroImage 43, 708–720 (2008)

    Article  Google Scholar 

  6. Lötjönen, J.M.P., Wolz, R., Koikkalainen, J.R., Thurfjell, L., Waldemar, G., Soininen, H., Rueckert, D.: Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage 49, 2352–2365

    Google Scholar 

  7. Powell, S., Magnotta, V.A., Johnson, H., Jammalamadaka, V.K., Pierson, R., Andreasen, N.C.: Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures. NeuroImage 39, 238–247 (2008)

    Article  Google Scholar 

  8. Wang, H., Das, S.R., Suh, J.W., Altinay, M., Pluta, J., Craige, C., Avants, B., Yushkevich, P.A.: A learning-based wrapper method to correct systematic errors in automatic image segmentation: Consistently improved performance in hippocampus, cortex and brain segmentation. NeuroImage 55, 968–985

    Google Scholar 

  9. Tu, Z., Bai, X.: Auto-Context and Its Application to High-Level Vision Tasks and 3D Brain Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1744–1757 (2010)

    Article  Google Scholar 

  10. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences 55, 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cho, Z.-H., Han, J.-Y., Hwang, S.-I., Kim, D.-s., Kim, K.-N., Kim, N.-B., Kim, S.J., Chi, J.-G., Park, C.-W., Kim, Y.-B.: Quantitative analysis of the hippocampus using images obtained from 7.0 T MRI. NeuroImage 49, 2134–2140 (2010)

    Article  Google Scholar 

  12. Morra, J.H., Tu, Z., Apostolova, L.G., Green, A.E., Toga, A.W., Thompson, P.M.: Automatic Subcortical Segmentation Using a Contextual Model. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 194–201. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, M. et al. (2011). Segmenting Hippocampus from 7.0 Tesla MR Images by Combining Multiple Atlases and Auto-Context Models. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2011. Lecture Notes in Computer Science, vol 7009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24319-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24319-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24318-9

  • Online ISBN: 978-3-642-24319-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics