A Non-rigid Registration Framework That Accommodates Pathology Detection

  • Chao Lu
  • James S. Duncan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7009)


Image-guided external beam radiation therapy (EBRT) for the treatment of cancer enables accurate placement of radiation dose to the cancerous region. However, the deformation of soft tissue during the course of treatment, such as in cervical cancer, presents significant challenges. Furthermore, the presence of pathologies such as tumors may violate registration constraints and cause registration errors. In this paper, we present a novel MAP framework that performs nonrigid registration and pathology detection simultaneously. The matching problem here is defined as a mixture of two different distributions which describe statistically image gray-level variations for two pixel classes (i.e. tumor class and normal tissue class). The determinant of the transformation’s Jacobian is also constrained, which guarantees the transformation to be smooth and simulates the tumor regression process. We perform the experiments on 30 patient MR data to validate our approach. Quantitative analysis of experimental results illustrate the promising performance of this method in comparison to previous techniques.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nag, S., Chao, C., Martinez, A., Thomadsen, B.: The american brachytherapy society recommendations for low-dose-rate brachytherapy for carcinoma of the cervix. Int. J. Radiation Oncology Biology Physics 52(1), 33–48 (2002)CrossRefGoogle Scholar
  2. 2.
    van de Bunt, L., van de Heide, U.A., Ketelaars, M., de Kort, G.A.P., Jurgenliemk-Schulz, I.M.: Conventional conformal, and intensity-modulated radiation therapy treatment planning of external beam radiotherapy for cervical cancer: The impact of tumor regression. International Journal of Radiation Oncology, Biology, Physics 64(1), 189–196 (2006)CrossRefGoogle Scholar
  3. 3.
    Jaffray, D.A., Carlone, M., Menard, C., Breen, S.: Image-guided radiation therapy: Emergence of MR-guided radiation treatment (MRgRT) systems. In: Medical Imaging 2010: Physics of Medical Imaging, vol. 7622, pp. 1–12 (2010)Google Scholar
  4. 4.
    Staring, M., van der Heide, U.A., Klein, S., Viergever, M., Pluim, J.: Registration of cervical MRI using multifeature mutual information. IEEE Transactions on Medical Imaging 28(9), 1412 (2009)CrossRefGoogle Scholar
  5. 5.
    Lu, C., Chelikani, S., Papademetris, X., Knisely, J.P., Milosevic, M.F., Chen, Z., Jaffray, D.A., Staib, L.H., Duncan, J.S.: An integrated approach to segmentation and nonrigid registration for application in image-guided pelvic radiotherapy. Medical Image Analysis 15(5) (2011), doi:10.1016/ Scholar
  6. 6.
    Lu, C., Chelikani, S., Chen, Z., Papademetris, X., Staib, L.H., Duncan, J.S.: Integrated segmentation and nonrigid registration for application in prostate image-guided radiotherapy. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 53–60. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Oliver, A., Freixenet, J., Marti, J., Perez, E., Pont, J., Denton, E.R.E., Zwiggelaar, R.: A review of automatic mass detection and segmentation in mammographic images. Medical Image Analysis 14(2), 87 (2010)CrossRefGoogle Scholar
  8. 8.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Med. Imag. 18(8), 712–721 (1999)CrossRefGoogle Scholar
  9. 9.
    Greene, W.H., Chelikani, S., Purushothaman, K., Chen, Z., Papademetris, X., Staib, L.H., Duncan, J.S.: Constrained non-rigid registration for use in image-guided adaptive radiotherapy. Medical Image Analysis 13(5), 809–817 (2009)CrossRefGoogle Scholar
  10. 10.
    Lu, C., Chelikani, S., Duncan, J.S.: A unified framework for joint segmentation, nonrigid registration and tumor detection: Application to MR-guided radiotherapy. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 525–537. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Lu, S.C., Chelikani, Papademetris, X., Staib, L., Duncan, J.: Constrained non-rigid registration using Lagrange multipliers for application in prostate radiotherapy. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2010), pp. 133–138 (June 2010)Google Scholar
  12. 12.
    Hamm, B., Forstner, R.: Section 3.2.1. General MR Appearance. In: MRI and CT of the Female Pelvis, p. 139 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chao Lu
    • 1
  • James S. Duncan
    • 1
    • 2
  1. 1.Department of Electrical Engineering, School of Engineering & Applied ScienceYale UniversityNew HavenUSA
  2. 2.Department of Diagnostic Radiology, School of MedicineYale UniversityNew HavenUSA

Personalised recommendations