Skip to main content

Generalized Learning Problems and Applications to Non-commutative Cryptography

(Extended Abstract)

  • Conference paper
Provable Security (ProvSec 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6980))

Included in the following conference series:

Abstract

We propose a generalization of the learning parity with noise (LPN) and learning with errors (LWE) problems to an abstract class of group-theoretic learning problems that we term learning homomorphisms with noise (LHN). This class of problems contains LPN and LWE as special cases, but is much more general. It allows, for example, instantiations based on non-abelian groups, resulting in a new avenue for the application of combinatorial group theory to the development of cryptographic primitives. We then study a particular instantiation using relatively free groups and construct a symmetric cryptosystem based upon it.

Full version available at [7]. Supported in part by NSF grants CNS 1117675/1117679.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pp. 99–108. ACM, New York (1996)

    Google Scholar 

  2. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: STOC 1997, pp. 284–293 (1997)

    Google Scholar 

  3. Angluin, D., Laird, P.: Learning from noisy examples. Machine Learning 2(4), 343–370 (1988)

    Google Scholar 

  4. Anshel, I., Anshel, M., Goldfeld, D.: Non-abelian key agreement protocols. Discrete Applied Mathematics 130(1), 3–12 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Arora, S., Ge, R.: New algorithms for learning in presence of errors (2011) (manuscript)

    Google Scholar 

  7. Baumslag, G., Fazio, N., Nicolosi, A.R., Shpilrain, V., Skeith, III, W. E.: Generalized learning problems and applications to non-commutative cryptography. Cryptology ePrint Archive, Report 2011/357 (2011), http://eprint.iacr.org/2011/357

  8. Birget, J.C., Magliveras, S.S., Sramka, M.: On public-key cryptosystems based on combinatorial group theory. Tatra Mountains Mathematical Publications 33, 137–148 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Blass, A., Gurevich, Y.: Matrix transformation is complete for the average case. SIAM Journal on Computing 24(1), 3–29 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM 50, 2003 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. SIAM J. of Computing 32(3), 586–615 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Garber, D., Kaplan, S., Teicher, M., Tsaban, B., Vishne, U.: Probabilistic solutions of equations in the braid group. Advances in Applied Mathematics 35, 323–334 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 169–178. ACM, New York (2009)

    Google Scholar 

  15. Gentry, C.: Toward basing fully homomorphic encryption on worst-case hardness. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 116–137. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and rerandomizable yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 155–172. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Goldreich, O.: Foundations of Cryptography, vol. 1. Cambridge Univ. Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  18. Goldreich, O.: Foundations of Cryptography, vol. 2. Cambridge Univ. Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  19. Goldwasser, S., Micali, S.: Probabilistic encryption. JCSS 28(2), 270–299 (1984)

    MathSciNet  MATH  Google Scholar 

  20. Gonzalez-Vasco, M.I., Magliveras, S., Steinwandt, R.: Group Theoretic Cryptography. Chapman and Hall/CRC, United States (to appear, 2012)

    Google Scholar 

  21. Gonzalez-Vasco, M.I., Steinwandt, R.: Reaction attacks on public key cryptosystems based on the word problem. Applicable Algebra in Engineering, Communication and Computing 14(5), 335–340 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Gupta, N.: On groups in which every element has finite order. Amer. Math. Month. 96, 297–308 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key cryptosystem. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 2–12. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  24. Hall, M.: The Theory of Groups. Macmillan Company, New York (1959)

    MATH  Google Scholar 

  25. Ivanov, S.V.: The free Burnside groups of sufficiently large exponents. Internat. J. Algebra Comput. 4(1-2), ii+308 (1994)

    MathSciNet  MATH  Google Scholar 

  26. Kearns, M.: Efficient noise-tolerant learning from statistical queries. Journal of the ACM, 392–401 (1993)

    Google Scholar 

  27. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177), 203–209 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lee, E.: Right-invariance: A property for probabilistic analysis of cryptography based on infinite groups. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 103–118. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  29. Lyndon, R., Schupp, P.: Combinatorial Group Theory. Classics in Mathematics. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  30. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  31. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  32. Myasnikov, A., Roman’kov, V., Ushakov, A., Vershik, A.: The word and geodesic problems in free solvable groups. Trans. Amer. Math. Soc. 362, 4655–4682 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Myasnikov, A., Shpilrain, V., Ushakov, A.: Group-Based Cryptography. Birkhäuser Verlag, Switzerland (2008)

    MATH  Google Scholar 

  34. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  35. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: STOC, pp. 333–342 (2009)

    Google Scholar 

  36. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93. ACM Press, New York (2005)

    Google Scholar 

  37. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  38. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  39. Wagner, N.R., Magyarik, M.R.: A public key cryptosystem based on the word problem. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 19–36. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baumslag, G., Fazio, N., Nicolosi, A.R., Shpilrain, V., Skeith, W.E. (2011). Generalized Learning Problems and Applications to Non-commutative Cryptography. In: Boyen, X., Chen, X. (eds) Provable Security. ProvSec 2011. Lecture Notes in Computer Science, vol 6980. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24316-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24316-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24315-8

  • Online ISBN: 978-3-642-24316-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics