Advertisement

Tradeoff Exploration between Reliability, Power Consumption, and Execution Time

  • Ismail Assayad
  • Alain Girault
  • Hamoudi Kalla
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6894)

Abstract

We propose an off-line scheduling heuristics which, from a given software application graph and a given multiprocessor architecture (homogeneous and fully connected), produces a static multiprocessor schedule that optimizes three criteria: its length (crucial for real-time systems), its reliability (crucial for dependable systems), and its power consumption (crucial for autonomous systems). Our tricriteria scheduling heuristics, TSH, uses the active replication of the operations and the data-dependencies to increase the reliability, and uses dynamic voltage and frequency scaling to lower the power consumption.

Keywords

Power Consumption Pareto Front Failure Probability Communication Link Static Schedule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baleani, M., Ferrari, A., Mangeruca, L., Peri, M., Pezzini, S., Sangiovanni-Vincentelli, A.: Fault-tolerant platforms for automotive safety-critical applications. In: International Conference on Compilers, Architectures and Synthesis for Embedded Systems, CASES 2003, San Jose (CA), USA. ACM, New-York (2003)Google Scholar
  2. 2.
    Benoit, A., Dufossé, F., Girault, A., Robert, Y.: Reliability and performance optimization of pipelined real-time systems. In: International Conference on Parallel Processing, ICPP 2010, San Diego (CA), USA (September 2010)Google Scholar
  3. 3.
    Burd, T.D., Brodersen, R.W.: Energy efficient CMOS micro-processor design. In: Hawaii International Conference on System Sciences, HICSS 1995, Honolulu (HI), USA. IEEE, Los Alamitos (1995)Google Scholar
  4. 4.
    Dogan, A., Özgüner, F.: Matching and scheduling algorithms for minimizing execution time and failure probability of applications in heterogeneous computing. IEEE Trans. Parallel and Distributed Systems 13(3), 308–323 (2002)CrossRefGoogle Scholar
  5. 5.
    Elnozahy, E., Kistler, M., Rajamony, R.: Energy-efficient server clusters. In: Workshop on Power-Aware Computing Systems, WPACS 2002, Cambridge (MA), USA, pp. 179–196 (February 2002)Google Scholar
  6. 6.
    Girault, A., Kalla, H.: A novel bicriteria scheduling heuristics providing a guaranteed global system failure rate. IEEE Trans. Dependable Secure Comput. 6(4), 241–254 (2009)CrossRefGoogle Scholar
  7. 7.
    Girault, A., Saule, E., Trystram, D.: Reliability versus performance for critical applications. J. of Parallel and Distributed Computing 69(3), 326–336 (2009)CrossRefGoogle Scholar
  8. 8.
    Grandpierre, T., Lavarenne, C., Sorel, Y.: Optimized rapid prototyping for real-time embedded heterogeneous multiprocessors. In: International Workshop on Hardware/Software Co-Design, CODES 1999, Rome, Italy. ACM, New York (1999)Google Scholar
  9. 9.
    Knight, J.C., Leveson, N.G.: An experimental evaluation of the assumption of independence in multi-version programming. IEEE Trans. Software Engin. 12(1), 96–109 (1986)CrossRefGoogle Scholar
  10. 10.
    Leung, J.Y.-T. (ed.): Handbook of Scheduling. Algorithms: Models, and Performance Analysis. Chapman & Hall/CRC Press (2004)Google Scholar
  11. 11.
    Lloyd, D., Lipow, M.: Reliability: Management, Methods, and Mathematics. ch.9. Prentice-Hall, Englewood Cliffs (1962)zbMATHGoogle Scholar
  12. 12.
    Melhem, R., Mossé, D., Elnozahy, E.N.: The interplay of power management and fault recovery in real-time systems. IEEE Trans. Comput. 53(2), 217–231 (2004)CrossRefGoogle Scholar
  13. 13.
    Pering, T., Burd, T.D., Brodersen, R.W.: The simulation and evaluation of dynamic voltage scaling algorithms. In: International Symposium on Low Power Electronics and Design, ISLPED 1998, Monterey (CA), USA, pp. 76–81. ACM, New York (August 1998)Google Scholar
  14. 14.
    Pop, P., Poulsen, K., Izosimov, V.: Scheduling and voltage scaling for energy/reliability trade-offs in fault-tolerant time-triggered embedded systems. In: International Conference on Hardware-Software Codesign and System Synthesis, CODES+ISSS 2007, Salzburg, Austria. ACM, New York (October 2007)Google Scholar
  15. 15.
    Shatz, S.M., Wang, J.-P.: Models and algorithms for reliability-oriented task-allocation in redundant distributed-computer systems. IEEE Trans. Reliability 38(1), 16–26 (1989)CrossRefGoogle Scholar
  16. 16.
    Souyris, J., Pavec, E.L., Himbert, G., Jégu, V., Borios, G., Heckmann, R.: Computing the worst case execution time of an avionics program by abstract interpretation. In: International Workshop on Worst-case Execution Time, WCET 2005, Mallorca, Spain, pp. 21–24 (July 2005)Google Scholar
  17. 17.
    T’kindt, V., Billaut, J.-C.: Multicriteria Scheduling: Theory, Models and Algorithms. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  18. 18.
    Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mueller, F., Puaut, I., Puschner, P., Staschulat, J., Stenström, P.: The determination of worst-case execution times — overview of the methods and survey of tools. ACM Trans. Embedd. Comput. Syst. 7(3) (April 2008)Google Scholar
  19. 19.
    Zhu, D., Melhem, R., Mossé, D.: The effects of energy management on reliability in real-time embedded systems. In: International Conference on Computer Aided Design, ICCAD 2004, San Jose (CA), USA, pp. 35–40 (November 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ismail Assayad
    • 1
  • Alain Girault
    • 2
  • Hamoudi Kalla
    • 3
  1. 1.ENSEM (RTSE team)University Hassan II of CasablancaMorocco
  2. 2.INRIA and Grenoble University (POP ART team and LIG lab)France
  3. 3.University of Batna (SECOS team)Algeria

Personalised recommendations