Partial Wave Expansion

  • Hans Paetz gen. SchieckEmail author
Part of the Lecture Notes in Physics book series (LNP, volume 842)


Especially at low energies the partial-wave expansion of the observables is useful. One advantage is that—since the Legendre functions are eigenfunctions of the angular momentum—the influence of and dependence on different angular momenta in the reaction can be studied.


  1. 1.
    Welton, T.A.: In: Marion J.B., Fowler, J.D. (eds.) Fast Neutron Physics II, p. 1317. Wiley Interscience, New York (1963)Google Scholar
  2. 2.
    Heiss, P.: Z. Physik 251, 159 (1972)ADSCrossRefGoogle Scholar
  3. 3.
    Lakin, W.: Phys. Rev. 98, 139 (1958)ADSCrossRefGoogle Scholar
  4. 4.
    Barschall, H.H., Haeberli, W. (eds.): In: Proceedings of the 3rd Internationl Symposium on Polarization Phenomena in Nuclear Reactions, Madison 1970, p. xxv. University of Wisconsin Press, Madison (1971)Google Scholar
  5. 5.
    Lane, A.M., Thomas, R.G.: Rev. Mod. Phys. 30, 257 (1958)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Brink, D.M., Satchler, G.R.: Angular momentum. Oxford University Press, Oxford (1971)Google Scholar
  7. 7.
    Seiler, F.: Comp. Phys. Comm. 6, 229 (1974)ADSCrossRefGoogle Scholar
  8. 8.
    Aulenkamp, H.: Diploma thesis, Universität zu Köln (1973, unpublished)Google Scholar
  9. 9.
    Nyga, K.: Diploma thesis, Universität zu Köln (1985, unpublished)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für KernphysikUniversität zu KölnKölnGermany

Personalised recommendations