Rotations, Angular Dependence of the Tensor Moments

  • Hans Paetz gen. SchieckEmail author
Part of the Lecture Notes in Physics book series (LNP, volume 842)


It is important to be able to describe polarization observables in rotated coordinate systems. Typical applications are: Spin precession in magnetic fields, deflection of polarized particle beams by optical elements, nuclear reactions, double scattering and polarization transfer. We start with the rotation of the density matrix \(\rho.\)


  1. 1.
    Condon, E.U., Shortley, G.H.: The Theory of Atomic Spectra. Cambridge University Press, Cambridge (1967)Google Scholar
  2. 2.
    Rose, M.E.: Elementary Theory of Angular Momentum. Wiley, New York (1957)Google Scholar
  3. 3.
    Brink, D.M., Satchler, G.R.: Angular Momentum. Oxford University Press, Oxford (1971)Google Scholar
  4. 4.
    Chaichian, M., Hagedorn, R.: Symmetries in Quantum Mechanics—From Angular Momentum to Supersymmetry, Graduate Student Series in Physics. Institute of Physics Publishing, Bristol (1998)Google Scholar
  5. 5.
    Barschall, H.H., Haeberli, W. (eds.): Proceedings of the 3rd International Symposium on Polarization Phenomena in Nuclear Reactions, Madison 1970. University of Wisconsin Press, Madison (1971)Google Scholar
  6. 6.
    Huber, P., Meyer, K.P. (eds.): Proceedings of the International Symposium on Polarization Phenomena of Nucleons, Basel 1960. Helv. Phys. Acta Suppl. VI. Birkhäuser, Basel (1961)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für KernphysikUniversität zu KölnKölnGermany

Personalised recommendations