Skip to main content

Scalar Product-Based Distributed Oblivious Transfer

  • Conference paper
Information Security and Cryptology - ICISC 2010 (ICISC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6829))

Included in the following conference series:

  • 1189 Accesses

Abstract

In a distributed oblivious transfer (DOT) the sender is replaced with m servers, and the receiver must contact k (k ≤ m) of these servers to learn the secret of her choice. Naor and Pinkas introduced the first unconditionally secure DOT for a sender holding two secrets. Blundo, D’Arco, Santis, and Stinson generalized Naor and Pinkas’s protocol, in the case that the sender holds n secrets, in the first so-called (km)-DOT-\(\binom{n}{1}\) protocol. Such a protocol should be secure against a coalition of less than k parties. However, Blundo et al. have shown that this level of security is impossible to achieve in one-round polynomial-based constructions.

In this paper, we show that if communication is allowed amongst the servers, we are able to construct an unconditionally secure, polynomial-based (km)-DOT-\(\binom{n}{1}\) protocol with the highest level of security. More precisely, in our construction, a receiver who contacts k servers and corrupt up to k − 1 servers (not necessarily from the set of the contacted servers) cannot learn more than one secret.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaver, D.: Multiparty protocols tolerating half faulty processors. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 560–572. Springer, Heidelberg (1990)

    Google Scholar 

  2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing - STOC 1988, pp. 1–10. ACM, New York (1988)

    Google Scholar 

  3. Blundo, C., D’Arco, P., Santis, A.D., Stinson, D.R.: New results on unconditionally secure distributed oblivious transfer. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 291–309. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Blundo, C., D’Arco, P., Santis, A.D., Stinson, D.R.: On unconditionally secure distributed oblivious transfer. J. Cryptology 20(3), 323–373 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brassard, G., Crépeau, C., Robert, J.M.: All-or-nothing disclosure of secrets. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  6. Desmedt, Y.G., Jajodia, S.: Redistributing secret shares to new access structures and its applications. Technical report, George Mason University (1997)

    Google Scholar 

  7. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Communications of the ACM 28, 637–647 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Naor, M., Pinkas, B.: Distributed oblivious transfer. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 205–219. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Nikov, V., Nikova, S., Preneel, B., Vandewalle, J.: On unconditionally secure distributed oblivious transfer. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 395–408. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Rabin, M.O.: How to exchange secrets with oblivious transfer. Technical report, Aiken Computation Lab, Harvard University (1981)

    Google Scholar 

  11. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Corniaux, C.L.F., Ghodosi, H. (2011). Scalar Product-Based Distributed Oblivious Transfer. In: Rhee, KH., Nyang, D. (eds) Information Security and Cryptology - ICISC 2010. ICISC 2010. Lecture Notes in Computer Science, vol 6829. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24209-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24209-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24208-3

  • Online ISBN: 978-3-642-24209-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics