Skip to main content

Spin Effects in Exciton–Polariton Condensates

  • Chapter
  • First Online:

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 172))

Abstract

Exciton–polaritons in microcavities form an unusual gas of weakly interacting bosons. It has no direct analogy in cold atomic gases, superfluids or superconductors due to its two-component spin structure: in typical planar microcavities the polaritons have two allowed spin projections to the structure axis. This is why the order parameter of a polariton condensate is a complex spinor. The magnitude and, possibly, sign of polariton–polariton interaction constant depends on the spin state of polaritons. The energy of an exciton–polariton condensate is also spin-dependent. These specific features make polariton condensates a unique laboratory for studies of spin effects in interacting Bose gases. Several new spin-dependent effects in polariton condensates have been theoretically predicted and experimentally observed during the recent decade. This review chapter addresses some of these effects: polarisation multistability, spin switching, spin rings and spin Meissner effect. In the last section we address the perspective of observation of spin superfluidity in microcavities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992)

    Article  ADS  Google Scholar 

  2. R. Houdré, C. Weisbuch, R.P. Stanley, U. Oesterle, P. Pellandini, M. Ilegems, Phys. Rev. Lett. 73, 2043 (1994)

    Article  ADS  Google Scholar 

  3. V. Savona, L.C. Andreani, P. Schwendimann, A. Quattropani, Solid State Commun. 93, 733 (1995)

    Article  ADS  Google Scholar 

  4. A.V. Kavokin, M. Kaliteevski, Solid State Commun. 95, 859 (1995)

    Article  ADS  Google Scholar 

  5. A. Imamoglu, J.R. Ram, Phys. Lett. A 214, 193 (1996)

    Article  ADS  Google Scholar 

  6. A. Imamoglu, J.R. Ram, S. Pau, Y. Yamamoto, Phys. Rev. A 53, 4250 (1996)

    Article  ADS  Google Scholar 

  7. L.S. Dang, D. Heger, R. Andre, F. Boeuf, R. Romestain, Phys. Rev. Lett. 81, 3920 (1998)

    Article  ADS  Google Scholar 

  8. P.G. Savvidis, J.J. Baumberg, R.M. Stevenson, M.S. Skolnick, D.M. Whittaker, J.S. Roberts, Phys. Rev. Lett. 84, 1547 (2000)

    Article  ADS  Google Scholar 

  9. J. Kasprzak et al., Nature 443, 409 (2006)

    Article  ADS  Google Scholar 

  10. R. Balili et al., Science 316, 1007 (2007)

    Article  ADS  Google Scholar 

  11. C.W. Lai et al., Nature 450, 529 (2007)

    Article  ADS  Google Scholar 

  12. S. Christopoulos et al., Phys. Rev. Lett. 98, 126405 (2007)

    Article  ADS  Google Scholar 

  13. G. Panzarini et al., Phys. Rev. B 59, 5082 (1999)

    Article  ADS  Google Scholar 

  14. P.G. Lagoudakis, P.G. Savvidis, J.J. Baumberg, D.M. Whittaker, P.R. Eastham, M.S. Skolnick, J.S. Roberts, Phys. Rev. B: Condens Matter Mater. Phys. 65, 161310 (2002)

    Article  ADS  Google Scholar 

  15. M.D. Martín, G. Aichmayr, L. Viña, R. André, Phys. Rev. Lett. 89, 077402 (2002)

    Article  ADS  Google Scholar 

  16. T.K. Paraïso, M. Wouters, Y. Léger, F. Morier-Genoud, B. Deveaud-Plédran, Nat. Mater. 9, 655 (2010)

    Article  ADS  Google Scholar 

  17. A. Amo, T.C.H. Liew, C. Adrados, R. Houdré, E. Giacobino, A.V. Kavokin, A. Bramati, Nat. Photon. 4, 361 (2010)

    Article  ADS  Google Scholar 

  18. Y.G. Rubo, A.V. Kavokin, I.A. Shelykh, Phys. Lett. A 358, 227 (2006)

    Article  ADS  MATH  Google Scholar 

  19. A.V. Larionov, V.D. Kulakovskii, S. Hofling, C. Schneider, L. Worschech, A. Forchel, Phys. Rev. Lett. 105, 256401 (2010)

    Article  ADS  Google Scholar 

  20. N.A. Gippius, I.A. Shelykh, D.D. Solnyshkov, S.S. Gavrilov, Y.G. Rubo, A.V. Kavokin, S.G. Tikhodeev, G. Malpuech, Phys. Rev. Lett. 98, 236401 (2007)

    Article  ADS  Google Scholar 

  21. I.A. Shelykh, T.C.H. Liew, A.V. Kavokin, Phys. Rev. Lett. 100, 116401 (2008)

    Article  ADS  Google Scholar 

  22. D. Sarkar, S.S. Gavrilov, M. Sich, J.H. Quilter, R.A. Bradley, N.A. Gippius, K. Guda V.D. Kulakovskii, M.S. Skolnick, D.N. Krizhanovskii, Phys. Rev. Lett. 105, 216402 (2010)

    Article  ADS  Google Scholar 

  23. C. Adrados, A. Amo, T.C.H. Liew, R. Hivet, R. Houdré, E. Giacobino, A.V. Kavokin, A. Bramati, Phys. Rev. Lett. 105, 216403 (2010)

    Article  ADS  Google Scholar 

  24. T.C.H. Liew, A.V. Kavokin, I.A. Shelykh, Phys. Rev. Lett. 101, 016402 (2008)

    Article  ADS  Google Scholar 

  25. R. Cerna, T.K. Paraiso, Y. Leger, M. Wouters, F. Morier-Genoud, M.T. Portella-Oberli, B. Deveaud-Pledran, privat communication.

    Google Scholar 

  26. M. Vladimirova, S. Cronenberger, D. Scalbert, K.V. Kavokin, A. Miard, A. Lemaitre, J. Bloch, D. Solnyshkov, G. Malpuech, A.V. Kavokin, Phys. Rev. B 82, 075301 (2010)

    Article  ADS  Google Scholar 

  27. T. Freixanet, B. Sermage, A. Tiberj, R. Planel, Phys. Rev. B 61, 7233 (2000)

    Article  ADS  Google Scholar 

  28. A. Kavokin, M. Glazov, G. Malpuech, Phys. Rev. Lett. 95, 136601 (2005)

    Article  ADS  Google Scholar 

  29. C. Leyder et al., Nat. Phys.3, 628 (2007)

    Google Scholar 

  30. M.M. Glazov, L.E. Golub, Phys. Rev. B 77, 165341 (2008)

    Article  ADS  Google Scholar 

  31. I.A. Shelykh et al., Phys. Rev. Lett. 102, 046407 (2009)

    Article  ADS  Google Scholar 

  32. K. Lagoudakis, T. Ostatnicky, A.V. Kavokin, Y.G. Rubo, R. Andre, B. Deveaud-Pledran, Science 326, 974 (2009)

    Article  ADS  Google Scholar 

  33. K.G. Lagoudakis, B. Pietka, M. Wouters, R. André, B. Deveaud-Plédran, Phys. Rev. Lett. 105, 120403 (2010)

    Article  ADS  Google Scholar 

  34. A. Amo et al., Nature 457, 291 (2009)

    Article  ADS  Google Scholar 

  35. A. Amo et al., Nat. Phys. 5, 805 (2009)

    Article  Google Scholar 

  36. E. Wertz et al., Nat. Phys. 6, 860 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the EU ITN project “CLERMONT4” and the IRSES project “POLAPHEN”. The author is deeply grateful to Yura Rubo, Tim Liew, Ivan Shelykh, Kirill Kavokin, Masha Vladimirova, Alberto Bramati, Alberto Amo, Daniele Sanvitto, Nikolay Gippius, Dima Krizhanovskii, Maurice Skolnick, Mike Kaliteevski, Konstantinos and Pavlos Lagoudakis, Luis Vina, Jeremy Baumberg and Jacqueline Bloch for many years of fruitful collaboration in the area of spin-related effects in microcavities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Kavokin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kavokin, A. (2012). Spin Effects in Exciton–Polariton Condensates. In: Timofeev, V., Sanvitto, D. (eds) Exciton Polaritons in Microcavities. Springer Series in Solid-State Sciences, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24186-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24186-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24185-7

  • Online ISBN: 978-3-642-24186-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics