Skip to main content

Vortices in Polariton OPO Superfluids

  • Chapter
  • First Online:
Exciton Polaritons in Microcavities

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 172))

Abstract

This chapter reviews the occurrence of quantised vortices in polariton fluids, primarily when polaritons are driven in the optical parametric oscillator (OPO) regime. We first review the OPO physics, together with both its analytical and numerical modelling, the latter being necessary for the description of finite size systems. Pattern formation is typical in systems driven away from equilibrium. Similarly, we find that uniform OPO solutions can be unstable to the spontaneous formation of quantised vortices. However, metastable vortices can only be injected externally into an otherwise stable symmetric state, and their persistence is due to the OPO superfluid properties. We discuss how the currents characterising an OPO play a crucial role in the occurrence and dynamics of both metastable and spontaneous vortices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     In rotating condensates, a vortex can be created if the angular velocity is higher than a critical value [75, 76]. When the rotation is halted, then the vortex will spiral out of the condensate [77].

  2. 2.

      Given a complex field or wavefunction, \(\vert \psi (\mathbf{r},t)\vert {\mathrm{e}}^{\mathrm{i}\phi (\mathbf{r},t)}\), describing either a quantum particle of mass m or a macroscopic number of particles condensed in the same quantum state, the current is defined as [76]:

    $$\begin{array}{rcl} \mathbf{j}(\mathbf{r},t) = \frac{\hslash } {m}\vert \psi (\mathbf{r},t){\vert }^{2}\nabla \phi (\mathbf{r},t) = \vert \psi (\mathbf{r},t){\vert }^{2}{\mathbf{v}}_{\mathrm{s}}(\mathbf{r},t),& & \end{array}$$
    (6.18)

    where \({\mathbf{v}}_{s}(\mathbf{r},t)\) is the flow velocity. In the following, with a slight abuse of notation, we will refer to the current as the gradient of the phase only, \(\nabla \phi (\mathbf{r},t)\).

  3. 3.

     Note also that we find that the value of the pump threshold for OPO is not altered by the presence of a weak photonic disorder.

  4. 4.

     D. Sarkar (University of Sheffield), private communication.

  5. 5.

     When generated by a noise pulse, both stable and metastable vortices have equal probability to have either charge ± 1. Similarly, when vortices are triggered via a Laguerre-Gauss probe, their vorticity can flip during the transient period. In particular, flipping can follow the appearance of two antivortices at the edge of the signal, one recombining with the triggered vortex. Note that the vorticity flipping conserves the total orbital angular momentum, in the sense that when for the signal m flips, say, from + 1 to − 1, for the idler the opposite happens, i.e. m flips from − 1 to + 1.

  6. 6.

    This is in reality an oversymplified version of the full equation satisfied by ψs, i({ r}), because one can show that there are small terms breaking the rotational symmetry, implying the vortex is not a pure angular momentum state, though it still has a definite winding number [D. Whittaker, private communication]. This, however, does not affect the expression of the healing length.

  7. 7.

     Note that, differently from the cw laser beam, the energy distribution spectrum of which is essentially δ-like, a pulsed beam has an intrinsic width in energy, proportional to the inverse pulse duration, σ t  − 1.

  8. 8.

     If the cw pump drives the system into the OPO regime, then the parametric scattering triggered by the pulsed probe will emerge in addition to the one related to OPO. However, as discussed later, the TOPO regime can be reached also in absence (below threshold) of the OPO.

  9. 9.

     See, for example, Fig. 3 of [82], where the intensity maximum of the extra population is reached within 4 ps after the maximum of the pulsed probe, is followed by a slow decay.

  10. 10.

     In the regime where the probe generates only a weak parametric scattering, aside the strong emission from the pump state, the dispersion is simply that of the LP and thus is not surprising that the signal propagates with a group velocity given by \({v}_{{k}_{\mathrm{pb}}}^{\mathrm{LP}}\). Remember that here, the cw pump is below the threshold for OPO.

  11. 11.

     Note, however, that even if in the atomic and polaritonic cases the same Laguerre-Gauss laser field is used, the mechanism of spinning the BEC atoms is different from the one which rotates polaritons.

  12. 12.

     We checked that m =  ± 1 (m =  ∓ 1) vortex solutions can appear only into the OPO signal (idler). A vortex probe pulse of any charge m injected resonantly to the pump momentum, and energy gets immediately transferred to an m =  ± 1 (m =  ∓ 1) vortex in the signal (idler), leaving the pump vortex-less.

  13. 13.

     Later, in Sect. 6.6.1, in connection to the stability of multiply quantised vortices, we also describe vortices in the TOPO regime, where we follow the vortex dynamics not of the OPO like here, but of the extra population only.

References

  1. L. Onsager, Nuovo Cimento 6, 249 (1949)

    MathSciNet  Google Scholar 

  2. R. Feynman, Application of Quantum Mechanics to Liquid Helium, Progress in Low Temperature Physics, vol. 1 (Elsevier, North Holland, Amsterdam, 1955)

    Google Scholar 

  3. J.F. Nye, M.V. Berry, Proc. R. Soc. A 336, 165 (1974)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. K. Staliunas, V.J. Sanchez-Morcillo, Transverse Patterns in Nonlinear Optical Resonators (Springer, Berlin, 2003)

    Google Scholar 

  5. K.G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L.S. Dang, B. Deveaud-Plédran, Nature Phys. 4, 706 (2008)

    Article  ADS  Google Scholar 

  6. K.G. Lagoudakis, T. Ostatnický, A.V. Kavokin, Y.G. Rubo, R. André, B. Deveaud-Plédran, Science 326, 974 (2009)

    Article  ADS  Google Scholar 

  7. K.G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T.C.H. Liew, V. Savona, A.V. Kavokin, R. André, B. Deveaud-Plédran, Phys. Rev. Lett. 106, 115301 (2011)

    Article  ADS  Google Scholar 

  8. D. Sanvitto, F. Marchetti, M. Szymańska, G. Tosi, M. Baudisch, F. Laussy, D. Krizhanovskii, M. Skolnick, L. Marrucci, A. Lemaître, J. Bloch, C. Tejedor, L.V. na, Nature Phys. 6, 527 (2010)

    Google Scholar 

  9. D.N. Krizhanovskii, D.M. Whittaker, R.A. Bradley, K. Guda, D. Sarkar, D. Sanvitto, L. Viña, E. Cerda, P. Santos, K. Biermann, R. Hey, M.S. Skolnick, Phys. Rev. Lett. 104, 126402 (2010)

    Article  ADS  Google Scholar 

  10. G. Roumpos, M.D. Fraser, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Nature Phys. 7, 129 (2011)

    Article  ADS  Google Scholar 

  11. G. Nardin, G. Grosso, Y. Leger, B. Pietka, F. Morier-Genoud, B. Deveaud-Plédran, Nature Phys. 635–641 (2011). DOI doi:10.1038/ nphys1959

    Google Scholar 

  12. D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M.D. Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V.G. Sala, P.S. Soares-Guimaraes, R. Houdre, E. Giacobino, C. Ciuti, A. Bramati, G. Gigli, Nature Photonics 5, 610–614 (2011)

    Article  ADS  Google Scholar 

  13. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeanbrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Devaud, L.S. Dang, Nature 443, 409–414 (2006)

    Article  ADS  Google Scholar 

  14. H. Deng, H. Haug, Y. Yamamoto, Rev. Mod. Phys. 82, 1489 (2010)

    Article  ADS  Google Scholar 

  15. I. Carusotto, presented at ICSCE4, Cambridge, UK (available at http://tcm.phy.cam.ac.uk/BIG/icsce4/talks/carusotto.pdf) (2008)

    Google Scholar 

  16. J. Keeling, N.G. Berloff, Nature 457, 273 (2009)

    Article  ADS  Google Scholar 

  17. J. Keeling, N. Berloff, Contemp. Phys. 52, 131 (2011)

    Article  ADS  Google Scholar 

  18. R.M. Stevenson, V.N. Astratov, M.S. Skolnick, D.M. Whittaker, M. Emam-Ismail, A.I. Tartakovskii, P.G. Savvidis, J.J. Baumberg, J.S. Roberts, Phys. Rev. Lett. 85, 3680 (2000)

    Article  ADS  Google Scholar 

  19. J.J. Baumberg, P.G. Savvidis, R.M. Stevenson, A.I. Tartakovskii, M.S. Skolnick, D.M. Whittaker, J.S. Roberts, Phys. Rev. B 62, R16247 (2000)

    Article  ADS  Google Scholar 

  20. A. Amo, D. Sanvitto, F.P. Laussy, D. Ballarini, E. del Valle, M.D. Martin, A. Lemaitre, J. Bloch, D.N. Krizhanovskii, M.S. Skolnick, C. Tejedor, L.V. na, Nature 457, 291 (2009)

    Google Scholar 

  21. M. Wouters, V. Savona, Phys. Rev. B 81, 054508 (2010)

    Article  ADS  Google Scholar 

  22. F.M. Marchetti, M.H. Szymańska, C. Tejedor, D.M. Whittaker, Phys. Rev. Lett. 105, 063902 (2010)

    Article  ADS  Google Scholar 

  23. M.H. Szymańska, F.M. Marchetti, D. Sanvitto, Phys. Rev. Lett. 105, 236402 (2010)

    Article  ADS  Google Scholar 

  24. A.V. Gorbach, R. Hartley, D.V. Skryabin, Phys. Rev. Lett. 104, 213903 (2010)

    Article  ADS  Google Scholar 

  25. M.S. Skolnick, T.A. Fisher, W.D. M., Semicond. Sci. Technol. 13, 645 (1998)

    Google Scholar 

  26. V. Savona, C. Piermarocchi, A. Quattropani, P. Schwendimann, F. Tassone, Phase Transitions 68, 169 (1999)

    Article  Google Scholar 

  27. G. Khitrova, H.M. Gibbs, F. Jahnke, M. Kira, S.W. Koch, Rev. Mod. Phys. 71, 1591 (1999)

    Article  ADS  Google Scholar 

  28. C. Ciuti, P. Schwendimann, A. Quattropani, Semicond. Sci. Technol. 18, S279 (2003)

    Article  ADS  Google Scholar 

  29. J. Keeling, F.M. Marchetti, M.H. Szymańska, P.B. Littlewood, Semicond. Sci. Technol. 22, R1 (2006)

    Article  Google Scholar 

  30. Y. Yamamoto, A. İmamoğlu, Mesoscopic Quantum Optics (Wiley, New York, 1999)

    MATH  Google Scholar 

  31. Y. Yamamoto, F. Tassone, H. Cao, Semiconductor Cavity Quantum Electrodynamics, Springer Tracts in Modern Physics, vol. 167 (Springer, Berlin, 2000)

    Google Scholar 

  32. A. Kavokin, G. Malpuech, Cavity Polaritons, Thin Films and Nanostructures, vol. 32 (Elsevier, NY, 2003)

    Google Scholar 

  33. A.V. Kavokin, J.J. Baumberg, G. Malpuech, F.P. Laussy, Microcavities (Oxford University Press, Oxford, 2007)

    Book  Google Scholar 

  34. C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, P. Schwendimann, Phys. Rev. B 58, 7926 (1998)

    Article  ADS  Google Scholar 

  35. G. Rochat, C. Ciuti, V. Savona, C. Permarocchi, A. Quattropani, P. Schwendimann, Phys. Rev. B 61, 13856 (2000)

    Article  ADS  Google Scholar 

  36. R. Houdré, C. Weisbuch, R.P. Stanley, U. Oesterle, M. Ilegems, Phys. Rev. Lett. 85, 2793 (2000)

    Article  ADS  Google Scholar 

  37. A.I. Tartakovskii, D.N. Krizhanovskii, D.A. Kurysh, V.D. Kulakovskii, M.S. Skolnick, J.S. Roberts, Phys. Rev. B 65, 081308 (2002)

    Article  ADS  Google Scholar 

  38. D.N. Krizhanovskii, A.I. Tartakovskii, V.D. Kulakovskii, M.S. Skolnick, J.S. Roberts, Phys. Rev. B 66, 165329 (2002)

    Article  ADS  Google Scholar 

  39. R. Butté, M.S. Skolnick, D.M. Whittaker, D. Bajoni, J.S. Roberts, Phys. Rev. B 68, 115325 (2003)

    Article  ADS  Google Scholar 

  40. N.A. Gippius, S.G. Tikhodeev, V.D. Kulakovskii, D.N. Krizhanovskii, A.I. Tartakovskii, EPL Europhys. Lett. 67, 997 (2004)

    Article  ADS  Google Scholar 

  41. A. Baas, J.P. Karr, M. Romanelli, A. Bramati, E. Giacobino, Phys. Rev. Lett. 96, 176401 (2006)

    Article  ADS  Google Scholar 

  42. D. Sanvitto, D.N. Krizhanovskii, D.M. Whittaker, S. Ceccarelli, M.S. Skolnick, J.S. Roberts, Phys. Rev. B 73, 241308 (2006)

    Article  ADS  Google Scholar 

  43. D.N. Krizhanovskii, D. Sanvitto, A.P.D. Love, M.S. Skolnick, D.M. Whittaker, J.S. Roberts, Phys. Rev. Lett. 97, 097402 (2006)

    Article  ADS  Google Scholar 

  44. D.N. Krizhanovskii, S.S. Gavrilov, A.P.D. Love, D. Sanvitto, N.A. Gippius, S.G. Tikhodeev, V.D. Kulakovskii, D.M. Whittaker, M.S. Skolnick, J.S. Roberts, Phys. Rev. B 77, 115336 (2008)

    Article  ADS  Google Scholar 

  45. D. Ballarini, D. Sanvitto, A. Amo, L. Viña, M. Wouters, I. Carusotto, A. Lemaitre, J. Bloch, Phys. Rev. Lett. 102, 056402 (2009)

    Article  ADS  Google Scholar 

  46. M.S. Skolnick, D.M. Whittaker, R. Butt, A.I. Tartakovskii, Semicond. Sci. Tech. 18, S301 (2003)

    Article  ADS  Google Scholar 

  47. C. Ciuti, P. Schwendimann, A. Quattropani, Phys. Rev. B 63, 041303 (2001)

    Article  ADS  Google Scholar 

  48. W. Langbein, Phys. Rev. B 70, 205301 (2004)

    Article  ADS  Google Scholar 

  49. P.G. Savvidis, J.J. Baumberg, R.M. Stevenson, M.S. Skolnick, D.M. Whittaker, J.S. Roberts, Phys. Rev. Lett. 84, 1547 (2000)

    Article  ADS  Google Scholar 

  50. P.G. Savvidis, J.J. Baumberg, R.M. Stevenson, M.S. Skolnick, D.M. Whittaker, J.S. Roberts, Phys. Rev. B 62, R13278 (2000)

    Article  ADS  Google Scholar 

  51. R. Huang, F. Tassone, Y. Yamamoto, Phys. Rev. B 61, R7854 (2000)

    Article  ADS  Google Scholar 

  52. G. Dasbach, T. Baars, M. Bayer, A. Larionov, A. Forchel, Phys. Rev. B 62, 13076 (2000)

    Article  ADS  Google Scholar 

  53. J. Erland, V. Mizeikis, W. Langbein, J. Jensen, N. Mortensen, J. Hvam, Phys. Status Solidi B 221, 115 (2000)

    Article  ADS  Google Scholar 

  54. G. Messin, J.P. Karr, A. Baas, G. Khitrova, R. Houdré, R.P. Stanley, U. Oesterle, E. Giacobino, Phys. Rev. Lett. 87, 127403 (2001)

    Article  ADS  Google Scholar 

  55. M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. André, L.S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J.L. Staehli, B. Deveaud, Nature 414, 731 (2001)

    Article  ADS  Google Scholar 

  56. P.G. Savvidis, C. Ciuti, J.J. Baumberg, D.M. Whittaker, M.S. Skolnick, J.S. Roberts, Phys. Rev. B 64, 075311 (2001)

    Article  ADS  Google Scholar 

  57. S. Kundermann, M. Saba, C. Ciuti, T. Guillet, U. Oesterle, J.L. Staehli, B. Deveaud, Phys. Rev. Lett. 91, 107402 (2003)

    Article  ADS  Google Scholar 

  58. A. Huynh, J. Tignon, O. Larsson, P. Roussignol, C. Delalande, R. André, R. Romestain, L.S. Dang, Phys. Rev. Lett. 90, 106401 (2003)

    Article  ADS  Google Scholar 

  59. C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lamaitre, J. Bloch, P. Roussignol, C. Delalande, Nature 440, 904 (2006)

    Article  ADS  Google Scholar 

  60. G.K. Campbell, J. Mun, M. Boyd, E.W. Streed, W. Ketterle, D.E. Pritchard, Phys. Rev. Lett. 96, 020406 (2006)

    Article  ADS  Google Scholar 

  61. D.M. Whittaker, Phys. Rev. B 71, 115301 (2005)

    Article  ADS  Google Scholar 

  62. C. Ciuti, I. Carusotto, Phys. Status Solidi B 242, 2224 (2005)

    Article  ADS  Google Scholar 

  63. M. Wouters, I. Carusotto, Phys. Rev. B 75, 075332 (2007)

    Article  ADS  Google Scholar 

  64. A. Baas, J.P. Karr, M. Romanelli, A. Bramati, E. Giacobino, Phys. Rev. B 70, 161307 (2004)

    Article  ADS  Google Scholar 

  65. L. Cavigli, M. Gurioli, Phys. Rev. B 71, 035317 (2005)

    Article  ADS  Google Scholar 

  66. N.A. Gippius, I.A. Shelykh, D.D. Solnyshkov, S.S. Gavrilov, Y.G. Rubo, A.V. Kavokin, S.G. Tikhodeev, G. Malpuech, Phys. Rev. Lett. 98, 236401 (2007)

    Article  ADS  Google Scholar 

  67. C. Adrados, A. Amo, T.C.H. Liew, R. Hivet, R. Houdré, E. Giacobino, A.V. Kavokin, A. Bramati, Phys. Rev. Lett. 105, 216403 (2010)

    Article  ADS  Google Scholar 

  68. T.K. Paraïso, M. Wouters, Y. Léger, F. Morier-Genoud, B. Deveaud-Plédran, Nat. Mater. 9, 655 (2010)

    Article  ADS  Google Scholar 

  69. E. Cancellieri, F.M. Marchetti, M.H. Szymańska, C. Tejedor, Phys. Rev. B 83, 214507 (2011)

    Article  ADS  Google Scholar 

  70. A. Amo, S. Pigeon, C. Adrados, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, Phys. Rev. B 82, 081301 (2010)

    Article  ADS  Google Scholar 

  71. M. Wouters, I. Carusotto, Phys. Rev. A 76, 043807 (2007)

    Article  ADS  Google Scholar 

  72. I. Carusotto, C. Ciuti, Phys. Rev. B 72, 125335 (2005)

    Article  ADS  Google Scholar 

  73. M.H. Szymańska, J. Keeling, P.B. Littlewood, Phys. Rev. Lett. 96, 230602 (2006)

    Article  ADS  Google Scholar 

  74. M. Wouters, I. Carusotto, Phys. Rev. Lett. 99, 140402 (2007)

    Article  ADS  Google Scholar 

  75. G.B. Hess, W.M. Fairbank, Phys. Rev. Lett. 19, 216 (1967)

    Article  ADS  Google Scholar 

  76. L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation, (Clarendon Press, Oxford, 2003)

    MATH  Google Scholar 

  77. D.S. Rokhsar, Phys. Rev. Lett. 79, 2164 (1997)

    Article  ADS  Google Scholar 

  78. D.M. Whittaker, Phys. Stat. Sol. C 2, 733 (2005)

    Article  Google Scholar 

  79. M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

    Article  ADS  Google Scholar 

  80. J. Keeling, N.G. Berloff, Phys. Rev. Lett. 100, 250401 (2008)

    Article  ADS  Google Scholar 

  81. G. Nardin, K.G. Lagoudakis, B. Pietka, F.M.C. Morier-Genoud, Y. Léger, B. Deveaud-Plédran, Phys. Rev. B 82, 073303 (2010)

    Article  ADS  Google Scholar 

  82. G. Tosi, M. Baudisch, D. Sanvitto, A. Lemaitre, J. Bloch, E. Karimi, B. Piccirillo, L. Marrucci, J. Phys. Conf. Series 210, 012023 (2010)

    Article  ADS  Google Scholar 

  83. O.A. Egorov, D.V. Skryabin, A.V. Yulin, F. Lederer, Phys. Rev. Lett. 102(15), 153904 (2009)

    Article  ADS  Google Scholar 

  84. O.A. Egorov, A.V. Gorbach, F. Lederer, D.V. Skryabin, Phys. Rev. Lett. 105, 073903 (2010)

    Article  ADS  Google Scholar 

  85. V. Boyer, C.F. McCormick, E. Arimondo, P.D. Lett, Phys. Rev. Lett. 99, 143601 (2007)

    Article  ADS  Google Scholar 

  86. A.M. Marino, V. Boyer, R.C. Pooser, P.D. Lett, K. Lemons, K.M. Jones, Phys. Rev. Lett. 101, 093602 (2008)

    Article  ADS  Google Scholar 

  87. A. Amo, D. Sanvitto, L.V. na, Semicond. Sci. Technol. 25, 043001 (2010)

    Google Scholar 

  88. M.F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, W.D. Phillips, Phys. Rev. Lett. 97, 170406 (2006)

    Article  ADS  Google Scholar 

  89. C. Ryu, M.F. Andersen, P. Cladé, V. Natarajan, K. Helmerson, W.D. Phillips, Phys. Rev. Lett. 99, 260401 (2007)

    Article  ADS  Google Scholar 

  90. A. Ramanathan, K.C. Wright, S.R. Muniz, M. Zelan, W.T. Hill, C.J. Lobb, K. Helmerson, W.D. Phillips, G.K. Campbell, Phys. Rev. Lett. 106, 130401 (2011)

    Article  ADS  Google Scholar 

  91. G. Tosi, F.M. Marchetti, D. Sanvitto, C. Antón, M.H. Szymańska, A. Berceanu, C. Tejedor, L. Marrucci, A. Lemaître, J. Bloch, L. Viña, Phys. Rev. Lett. 107, 036401 (2011)

    Article  ADS  Google Scholar 

  92. H. Pu, C.K. Law, J.H. Eberly, N.P. Bigelow, Phys. Rev. A 59, 1533 (1999)

    Article  ADS  Google Scholar 

  93. M. Möttönen, T. Mizushima, T. Isoshima, M.M. Salomaa, K. Machida, Phys. Rev. A 68, 023611 (2003)

    Article  ADS  Google Scholar 

  94. Y. Shin, M. Saba, M. Vengalattore, T.A. Pasquini, C. Sanner, A.E. Leanhardt, M. Prentiss, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 93, 160406 (2004)

    Article  ADS  Google Scholar 

  95. J.J. García-Ripoll, G. Molina-Terriza, V.M. Pérez-García, L. Torner, Phys. Rev. Lett. 87, 140403 (2001)

    Article  ADS  Google Scholar 

  96. M.O. Borgh, J. Keeling, N.G. Berloff, Phys. Rev. B 81, 235302 (2010)

    Article  ADS  Google Scholar 

  97. K.G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T.C.H. Liew, V. Savona, A.V. Kavokin, R. André, B. Deveaud-Plédran, Phys. Rev. Lett. 106, 115301 (2011)

    Article  ADS  Google Scholar 

  98. Y.G. Rubo, Phys. Rev. Lett. 99, 106401 (2007)

    Article  ADS  Google Scholar 

  99. M.D. Fraser, G. Roumpos, Y. Yamamoto, New J. Phys. 11, 113048 (2009)

    Article  ADS  Google Scholar 

  100. F. Manni, K.G. Lagoudakis, T.C.H. Liew, R. André, B. Deveaud-Plédran, Phys. Rev. Lett. 107, 106401 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge fruitful collaborations with A. Berceanu, E. Cancellieri, D. Sanvitto, C. Tejedor, and D. M. Whittaker on some of the topics discussed in this review, as well as the collaboration with the experimental group at UAM in Madrid (C. Antón, M. Baudisch, G. Tosi, L. Viña). We are particularly grateful to I. Carusotto and J. Keeling for stimulating discussions and for the critical reading of this manuscript. We also would like to thank C. Creatore, B. Deveaud-Plédran, M. Maragkou, and Y. Yamamoto for useful suggestions and points of discussion. F.M.M. acknowledges the financial support from the programs Ramón y Cajal and POLATOM (ESF). This work has been also supported by the Spanish MEC (MAT2008-01555, QOIT-CSD2006-00019), CAM (S-2009/ESP-1503), and FP7 ITN “Clermont4” (235114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca M. Marchetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marchetti, F.M., Szymańska, M.H. (2012). Vortices in Polariton OPO Superfluids. In: Timofeev, V., Sanvitto, D. (eds) Exciton Polaritons in Microcavities. Springer Series in Solid-State Sciences, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24186-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24186-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24185-7

  • Online ISBN: 978-3-642-24186-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics