Skip to main content

Coexisting Polariton Condensates and Their Temporal Coherence in Semiconductor Microcavities

  • Chapter
  • First Online:
  • 2214 Accesses

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 172))

Abstract

In this chapter, we study macroscopically occupied condensates, which can be observed in semiconductor microcavities under conditions of resonant or non-resonant excitation. In the case of resonant excitation, polariton condensates form due to optical parametric oscillation (OPO) and are strongly non-equilibrium states. In case of non-resonantly incoherently pumped system, the distribution of the higher energy polaritons shows some thermalisation, but the resultant polariton condensates are also far from thermodynamic equilibrium due to finite polariton lifetime. In this chapter, we show that both systems have very similar properties. We reveal the effects of polariton–polariton interactions and non-equilibrium character on the condensate properties. Above threshold condensation into several polariton levels with different energies and k-vectors is observed, which arises from the non-equilibrium character of the polariton system. The specific k-vectors at which condensation is triggered are determined by the local disorder potential landscape. We also investigate the coherence of a single condensed mode by measuring the first (g (1))- and second (g (2))-order correlation functions. We find that the decay times of these functions are \(\sim 100\mbox{ \textendash }150\,\mathrm{ps}\), much longer than the 1.5 ps polariton lifetime. Even though the polariton condensate is a non-equilibrium system, the strong slowing down of the decay allows coherence decay processes characteristic of an equilibrium, interacting BEC to be observed. The signature of the interactions is a Gaussian form for the g (1)-function and a saturation of coherence time with increasing number of particles in the condensate, as observed experimentally and confirmed theoretically. Although predicted, these effects have not been observed for atom BECs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    During the power dependence measurements of τ c , the g (1)(τ) is measured at the delay times τ of \(5 --150\,\)ps and τ c is extracted as .

  2. 2.

    The reservoir consists of all the occupied modes in the system, predominantly exciton states at high wavevector.

  3. 3.

    The factor of 4 is a counting factor which arises when the interaction is between two different modes.

  4. 4.

    Due to the small spatial overlap ( ∼ 10%) between the pump mode and emitting spots, the relevant value of N r may be a factor of 10 smaller than the total reservoir population, thus increasing the estimated coherence time due to interactions with the reservoir by up to a factor of ∼ 3, further decreasing any contribution from thermal reservoir fluctuations.

  5. 5.

    The idler intensity is too weak to permit study of its coherence close to threshold.

  6. 6.

    VCSEL Design, Fabrication, Characterization and Applications (Cambridge University Press, 1999), p. 240.

References

  1. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymanska, R. Andre, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, Le Si Dang, Nature 443, 409–414 (2006)

    Article  ADS  Google Scholar 

  2. M. Richard, J. Kasprzak, R. Andr, R. Romestain, G. Le Si Dang Malpuech, A. Kavokin, Phys. Rev. B 72, 201301 (2005)

    Google Scholar 

  3. R. Balili, V. Hartwell, D. Snoke, L. Pfei_er, K. West, Science 316, 1007–1010 (2007)

    Google Scholar 

  4. D.N. Krizhanovskii, A.P. Love, D. Sanvitto, D.M. Whittaker, M.S. Skolnick, J.S. Roberts, Phys. Rev. B 75, 233307 (2007)

    Article  ADS  Google Scholar 

  5. S. Christopoulos, G. Baldassarri von Hogersthal, A.J. Grundy, P.G. Lagoudakis, A.V. Kavokin, J.J. Baumberg, G. Christmann, R. Butte, E. Feltin, J.-F. Carlin, N. Grandjean, Phys. Rev. Lett. 98, 126405 (2007).

    Article  ADS  Google Scholar 

  6. G. Christmann, R. Butte, E. Feltin, J.F. Carlin, N. Grandjean, Appl. Phys. Lett. 93, 051102 (2008)

    Article  ADS  Google Scholar 

  7. H. Deng et al., Phys. Rev. Lett. 97, 146402 (2006)

    Article  ADS  Google Scholar 

  8. R.M. Stevenson, V.N. Astratov, M.S. Skolnick, D.M. Whittaker, M. Emam-Ismail, A.I. Tartakovskii, P.G. Savvidis, J.J. Baumberg, J.S. Roberts, Phys. Rev. Lett. 85, 3680 (2000)

    Article  ADS  Google Scholar 

  9. M. Wouters, I. Carussoto, Phys. Rev. Lett. 99, 140402 (2007)

    Article  ADS  Google Scholar 

  10. D.N. Krizhanovskii, D.M. Whittaker, R.A. Bradley, K. Guda, D. Sarkar, D. Sanvitto, L. Vina, E. Cerda, P. Santos, K. Biermann, R. Hey, M.S. Skolnick, Phys. Rev. Lett. 104, 126402 (2010)

    Article  ADS  Google Scholar 

  11. M.H. Szymanska, J. Keeling, P.B. Littlewood, Phys. Rev. Lett. 96, 230602 (2006)

    Article  ADS  Google Scholar 

  12. J. Keeling, N.G. Berlo, Phys. Rev. Lett. 100, 250401 (2008)

    Article  ADS  Google Scholar 

  13. D. Sarchi, V. Savona, Phys. Rev. B 75, 115326 (2007)

    Article  ADS  Google Scholar 

  14. D. Sanvitto, D.N. Krizhanovskii, D.M. Whittaker, S. Ceccarelli, M.S. Skolnick, J.S. Roberts, Phys. Rev. B 73, 241308 (2006)

    Article  ADS  Google Scholar 

  15. D.N. Krizhanovskii, D. Sanvitto, A.P. Love, M.S. Skolnick, D.M. Whittaker, J.S. Roberts, Phys. Rev. Lett. 97, 097402 (2006)

    Article  ADS  Google Scholar 

  16. A.P.D. Love, D.N. Krizhanovskii, D.M. Whittaker, R. Bouchekioua, D. Sanvitto, S. Al Rizeiqi, R. Bradley, M.S. Skolnick, P.R. Eastham, R. André, Le Si Dang, Phys. Rev. Lett. 101, 067404 (2008)

    Article  ADS  Google Scholar 

  17. K.G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. Andre, B. Le Si Dang Deveaud-Pledran, Nat. Phys. 4, 706 (2008)

    Google Scholar 

  18. D.N. Krizhanovskii, K.G. Lagoudakis, M. Wouters, B. Pietka, R.A. Bradley, K. Guda, D.M. Whittaker, M.S. Skolnick, B. Deveaud-Plédran, M. Richard, R. André, Le Si Dang, Phys. Rev. B 80, 045317 (2009)

    Article  ADS  Google Scholar 

  19. F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, P. Schwendimann, Phys. Rev. B 56, 7554 (1997)

    Article  ADS  Google Scholar 

  20. A.I. Tartakovskii, M. Emam-Ismail, R.M. Stevenson, M.S. Skolnick, V.N. Astratov, D.M. Whittaker, J.J. Baumberg, J.S. Roberts, Phys. Rev. B 62, R2283 (2000)

    Article  ADS  Google Scholar 

  21. M. Wouters, I. Carusotto, C. Ciuti, Phys. Rev. B 77, 115340 (2008)

    Article  ADS  Google Scholar 

  22. P.R. Eastham, Phys. Rev. B 78, 035319 (2008)

    Article  ADS  Google Scholar 

  23. R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford, 2000)

    MATH  Google Scholar 

  24. L.K. Thomsen, H.M. Wiseman, Phys. Rev. A 65, 063607 and reference there in (2002)

    Google Scholar 

  25. M. Kohl, T.W. Hansch, T. Esslinger, Phys. Rev. Lett. 87, 160404, (2001)

    Article  ADS  Google Scholar 

  26. A. Ottl, S. Ritter, T. Esslinger, Phys. Rev. Lett. 95, 090404, (2005)

    Article  ADS  Google Scholar 

  27. D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, J. Bloch, Phys. Rev. Lett. 100, 047401 (2008)

    Article  ADS  Google Scholar 

  28. M. Wouters, I. Carusotto, Phys. Rev. A 76, 043807 (2007)

    Article  ADS  Google Scholar 

  29. E.A. Cerda-Méndez, D.N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P.V. Santos, D. Sarkar, M.S. Skolnick, Phys. Rev. Lett. 105, 116402 (2010)

    Article  ADS  Google Scholar 

  30. M. Gurioli et al., Phys. Rev. Lett. 94, 183901 (2005)

    Article  ADS  Google Scholar 

  31. D. Porras, C. Tejedor, Phys. Rev. B 67, 161310 (R) (2003)

    Google Scholar 

  32. D.M. Whittaker, Phys. Rev. B 71, 115301 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the EU ITN Clermont 2 and Clermont 4 projects and EPSRC grants GR/S09838/01, GR/S76076/01. D. Krizhanovskii is an EPSRC Advanced Fellow (grant EP/E051448/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Krizhanovskii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krizhanovskii, D.N., Whittaker, D.M., Skolnick, M.S., Lagoudakis, K.G., Wouters, M. (2012). Coexisting Polariton Condensates and Their Temporal Coherence in Semiconductor Microcavities. In: Timofeev, V., Sanvitto, D. (eds) Exciton Polaritons in Microcavities. Springer Series in Solid-State Sciences, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24186-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24186-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24185-7

  • Online ISBN: 978-3-642-24186-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics