Skip to main content

Truncated Wigner Approximation for Nonequilibrium Polariton Quantum Fluids

  • Chapter
  • First Online:
  • 2315 Accesses

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 172))

Abstract

In this chapter we review the stochastic approach that we recently developed to model the kinetics of polariton Bose–Einstein condensation, based on a truncated Wigner approximation. The approach consists in neglecting the third-order term appearing in the master equations for the Wigner distribution of the quantum field. The resulting Fokker–Planck equation can be modeled by numerically solving the corresponding stochastic Langevin equation, coupled to a phenomenological diffusion equation for the excitonic reservoir that provides the gain-loss mechanism. This approach is particularly well suited for polaritons, in which the neglected term is often negligible compared to the intrinsic loss rates of the polariton field. We apply our model to typical experimental situations and discuss the results, with particular focus on the dynamics of phase fluctuations and the possibility to observe a Berezinski-Kosterlitz-Thouless crossover in the polariton superfluid.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    An experimental upper bound to the blue shift due to polariton–polariton interaction is given by the total blue shift, which is less than 1 meV.

References

  1. C. Adrados, A. Amo, T.C.H. Liew, R. Hivet, R. Houdre, E. Giacobino, A.V. Kavokin, A. Bramati, Spin rings in bistable planar semiconductor microcavities. Phys. Rev. Lett. 105(21), 116402 (2010)

    Google Scholar 

  2. U. Al Khawaja, J.O. Andersen, N.P. Proukakis, H.T.C Stoof, Low dimensional bose gases. Phys. Rev. A, 66(1), 013615 (2002)

    Google Scholar 

  3. A. Amo, T.C.H. Liew, C. Adrados, R. Houdre, E. Giacobino, A.V. Kavokin, A. Bramati, Exciton-polariton spin switches. Nat. Photon. 4(6), 361–366 (2010)

    Google Scholar 

  4. A. Amo, S. Pigeon, D. Sanvitto, V.G. Sala, R. Hivet, I. Carusotto, F. Pisanello, G. Lemenager, R. Houdre, E. Giacobino, C. Ciuti, A. Bramati, Hydrodynamic solitons in polariton superfluids. Science, 332, 1167 (2011)

    Google Scholar 

  5. A. Amo, D. Sanvitto, F.P. Laussy, D. Ballarini, E. del Valle, M.D. Martin, A. Lemaitre, J. Bloch, D.N. Krizhanovskii, M.S. Skolnick, C. Tejedor, L. Vina, Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature, 457(7227), 291–U3 (2009)

    Article  ADS  Google Scholar 

  6. A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, A. Bramati, Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5(11), 805–810 (2009)

    Article  Google Scholar 

  7. A. Baas, J.P. Karr, H. Eleuch, E. Giacobino, Optical bistability in semiconductor microcavities. Phys. Rev. A 69(2) 023809 (2004)

    Google Scholar 

  8. D. Bajoni, E. Semenova, A. Lemaitre, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, J. Bloch, Optical bistability in a gaas-based polariton diode. Phys. Rev. Lett. 101(26), 267404 (2008)

    Google Scholar 

  9. D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaitre, J. Bloch, Polariton laser using single micropillar gaas-gaalas semiconductor cavities. Phys. Rev. Lett. 100(4), 047401 (2008)

    Google Scholar 

  10. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Bose–einstein condensation of microcavity polaritons in a trap. Science 316(5827), 1007–1010 (2007)

    Article  ADS  Google Scholar 

  11. J. Bloch, R. Planel, V. Thierry-Mieg, J.M. Gerard, D. Barrier, J.Y. Marzin, E. Costard, Strong-coupling regime in pillar semiconductor microcavities. Superlattices Microst. 22(3), 371–374 (1997)

    Article  ADS  Google Scholar 

  12. H. Thien Cao, T.D. Doan, D.B. Tran Thoai, H. Haug, Condensation kinetics of cavity polaritons interacting with a thermal phonon bath. Phys. Rev. B 69(24), 245325 (2004)

    Google Scholar 

  13. G. Dasbach, M. Schwab, M. Bayer, A. Forchel, Parametric polariton scattering in microresonators with three-dimensional optical confinement. Phys. Rev. B 64(20), 201309 (2001)

    Google Scholar 

  14. M.J. Davis, S.A. Morgan, K. Burnett, Simulations of bose fields at finite temperature. Phys. Rev. Lett. 87(16), 160402 (2001)

    Google Scholar 

  15. H. Deng, H. Haug, Y. Yamamoto, Exciton-polariton bose–einstein condensation. Rev. Mod. Phys. 82(2), 1489–1537 (2010)

    Article  ADS  Google Scholar 

  16. H. Deng, D. Press, S. Gotzinger, G.S. Solomon, R. Hey, K.H. Ploog, Y. Yamamoto, Quantum degenerate exciton-polaritons in thermal equilibrium. Phys. Rev. Lett. 97(14), 146402 (2006)

    Google Scholar 

  17. H. Deng, G.S. Solomon, R. Hey, K.H. Ploog, Y. Yamamoto, Spatial coherence of a polariton condensate. Phys. Rev. Lett. 99(12), 126403 (2007)

    Google Scholar 

  18. T.D. Doan, H. Thien Cao, D.B. Tran Thoai, H. Haug, Coherence of condensed microcavity polaritons calculated within boltzmann-master equations. Phys. Rev. B 78(20), 205306 (2008)

    Google Scholar 

  19. T.D. Doan, H. Thien Cao, D.B. Tran Thoai, H. Haug, Condensation kinetics of microcavity polaritons with scattering by phonons and polaritons. Phys. Rev. B 72(8), 085301 (2005)

    Google Scholar 

  20. L. Ferrier, S. Pigeon, E. Wertz, M. Bamba, P. Senellart, Isabelle Sagnes, Aristide Lemaitre, Cristiano Ciuti, and Jacqueline Bloch. Polariton parametric oscillation in a single micropillar cavity. Appl. Phys. Lett. 97(3), 031105 (2010)

    Google Scholar 

  21. L. Ferrier, E. Wertz, R. Johne, D.D. Solnyshkov, P. Senellart, I. Sagnes, A. Lemaitre, G. Malpuech, J. Bloch, Interactions in confined polariton condensates. Phys. Rev. Lett. 106(12), 126401 (2011)

    Google Scholar 

  22. A.L. Fetter, Rotating trapped bose–einstein condensates. Rev. Mod. Phys. 81(2), 647–691 (2009)

    Article  ADS  Google Scholar 

  23. C.W. Gardiner, M.J. Davis, J. Phys. B 36, 4731 (2003)

    Article  ADS  Google Scholar 

  24. C.W. Gardiner, P. Zoller, Quantum kinetic theory: A quantum kinetic master equation for condensation of a weakly interacting bose gas without a trapping potential. Phys. Rev. A 55(4), 2902–2921 (1997)

    Article  ADS  Google Scholar 

  25. N.A. Gippius, S.G. Tikhodeev, V.D. Kulakovskii, D.N. Krizhanovskii, A.I. Tartakovskii, Nonlinear dynamics of polariton scattering in semiconductor microcavity: Bistability vs. stimulated scattering. Europhys. Lett. 67(6), 997–1003 (2004)

    Google Scholar 

  26. M. Gurioli, F. Bogani, D.S. Wiersma, P. Roussignol, G. Cassabois, G. Khitrova, H. Gibbs, Experimental study of disorder in a semiconductor microcavity. Phys. Revi. B 64(16), 165309 (2001)

    Google Scholar 

  27. Z. Hadzibabic, P. Krueger, M. Cheneau, B. Battelier, J. Dalibard, Berezinskii - kosterlitz - thouless crossover in a trapped atomic gas. Nature 441, 1118 (2006)

    Article  ADS  Google Scholar 

  28. H. Haug, H. Thien Cao, D.B. Tran Thoai, Coherence and decoherence of a polariton condensate. Phys. Rev. B 81(24), 245309 (2010)

    Google Scholar 

  29. H. Haug, A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors. (Springer, Berlin, 1997)

    Google Scholar 

  30. R. Johne, I.A. Shelykh, D.D. Solnyshkov, G. Malpuech, Polaritonic analogue of datta and das spin transistor. Phys. Rev. B 81(12), 125327 (2010)

    Google Scholar 

  31. D. Kadio, M. Gajda, K. Rzazewski, Phase fluctuations of a bose–einstein condensate in low-dimensional geometry. Phys. Rev. A 72(1), 013607 (2005)

    Google Scholar 

  32. Yu. Kagan, V.A. Kashurnikov, A.V. Krasavin, N.V. Prokof’ev, B.V. Svistunov, Quasicondensation in a two-dimensional interacting bose gas. Phys. Rev. A 61(4), 043608 (2000)

    Google Scholar 

  33. Yu. Kagan, B.V. Svistunov, Evolution of correlation properties and appearance of broken symmetry in the process of bose–einstein condensation. Phys. Rev. Lett. 79(18), 3331–3334 (1997)

    Article  ADS  Google Scholar 

  34. R. Idrissi Kaitouni, O. El Daif, A. Baas, M. Richard, T. Paraiso, P. Lugan, T. Guillet, F. Morier-Genoud, J.D. Ganiere, J.L. Staehli, V. Savona, B. Deveaud, Engineering the spatial confinement of exciton polaritons in semiconductors. Phys. Rev. B 74(15) 155311 (2006)

    Google Scholar 

  35. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymanska, R. Andre, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, Le Si Dang, Bose–einstein condensation of exciton polaritons. Nature 443(7110), 409–414 (2006)

    Article  ADS  Google Scholar 

  36. K.V. Kavokin, M.A. Kaliteevski, R.A. Abram, A.V. Kavokin, S. Sharkova, I.A. Shelykh, Stimulated emission of terahertz radiation by exciton-polariton lasers. Appl. Phys. Lett. 97(20), 1111 (2010)

    Google Scholar 

  37. J. Keeling, F.M. Marchetti, M.H. Szymanska, P.B. Littlewood, Collective coherence in planar semiconductor microcavities. Semicond. Sci. Tech. 22(5), R1–R26 (2007)

    Article  ADS  Google Scholar 

  38. J. Keeling, N.G. Berloff, Spontaneous rotating vortex lattices in a pumped decaying condensate. Phys. Rev. Lett. 100(25), 250401 (2008)

    Google Scholar 

  39. J. Keeling, N.G. Berloff, Spontaneous rotating vortex lattices in a pumped decaying condensate. Phys. Rev. Lett. 100(25), 250401 (2008)

    Google Scholar 

  40. J.M. Kosterlitz, D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181 (1973)

    Article  ADS  Google Scholar 

  41. D.N. Krizhanovskii, D.M. Whittaker, R.A. Bradley, K. Guda, D. Sarkar, D. Sanvitto, L. Vina, E. Cerda, P. Santos, K. Biermann, R. Hey, M.S. Skolnick, Effect of interactions on vortices in a nonequilibrium polariton condensate. Phys. Rev. Lett. 104(12), 126402 (2010)

    Google Scholar 

  42. K.G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T.C.H. Liew, V. Savona, A.V. Kavokin, R. Andre, B. Deveaud-Pledran, Probing the dynamics of spontaneous quantum vortices in polariton superfluids. Phys. Rev. Lett. 106(11), 115301 (2011)

    Google Scholar 

  43. K.G. Lagoudakis, T. Ostatnicky, A.V. Kavokin, Y.G. Rubo, R. Andre, B. Deveaud-Pledran, Observation of half-quantum vortices in an exciton-polariton condensate. Science 326(5955), 974–976 (2009)

    Article  ADS  Google Scholar 

  44. K.G. Lagoudakis, B. Pietka, M. Wouters, R. Andre, B. Deveaud-Pledran, Coherent oscillations in an exciton-polariton josephson junction. Phys. Rev. Lett. 105(12), 120403 (2010)

    Google Scholar 

  45. K.G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. Andre, L.E.S.I. Dang, B. Deveaud-Pledran, Quantized vortices in an exciton-polariton condensate. Nat. Phys. 4(9), 706–710 (2008)

    Article  Google Scholar 

  46. W. Langbein, J.M. Hvam, Elastic scattering dynamics of cavity polaritons: Evidence for time-energy uncertainty and polariton localization. Phys. Rev. Lett. 88(4), 047401 (2002)

    Google Scholar 

  47. F.P. Laussy, A.V. Kavokin, I.A. Shelykh, Exciton-polariton mediated superconductivity. Phys. Rev. Lett. 104(10), 106402 (2010)

    Google Scholar 

  48. F.P. Laussy, G. Malpuech, A. Kavokin, P. Bigenwald, Spontaneous coherence buildup in a polariton laser. Phys. Rev. Lett. 93(1), 016402 (2004)

    Google Scholar 

  49. C. Leyder, T.C.H. Liew, A.V. Kavokin, I.A. Shelykh, M. Romanelli, J. Ph. Karr, E. Giacobino, A. Bramati, Interference of coherent polariton beams in microcavities: Polarization-controlled optical gates. Phys. Rev. Lett. 99(19), 196402 (2007)

    Google Scholar 

  50. T.C.H. Liew, A.V. Kavokin, T. Ostatnicky, M. Kaliteevski, I.A. Shelykh, R.A. Abram, Exciton-polariton integrated circuits. Phys. Rev. B 82(3), 033302 (2010)

    Google Scholar 

  51. T.C.H. Liew, A.V. Kavokin, I.A. Shelykh, Optical circuits based on polariton neurons in semiconductor microcavities. Phys. Rev. Lett. 101(1), 016402 (2008)

    Google Scholar 

  52. T.C.H. Liew, Y.G. Rubo, A.V. Kavokin, Generation and dynamics of vortex lattices in coherent exciton-polariton fields. Phys. Rev. Lett. 101(18), 187401 (2008)

    Google Scholar 

  53. A.P.D. Love, D.N. Krizhanovskii, D.M. Whittaker, R. Bouchekioua, D. Sanvitto, S. Al Rizeiqi, R. Bradley, M.S. Skolnick, P.R. Eastham, R. André, Le Si Dang. Intrinsic decoherence mechanisms in the microcavity polariton condensate. Phys. Rev. Lett. 101(6), 067404 (2008)

    Google Scholar 

  54. G. Malpuech, A. Kavokin, A. Di Carlo, J.J. Baumberg, Polariton lasing by exciton-electron scattering in semiconductor microcavities. Phys. Rev. B 65(15), 153310 (2002)

    Google Scholar 

  55. C. Mora, Y. Castin, Extension of bogoliubov theory to quasicondensates. Phys. Rev. A 67(5), 053615 (2003)

    Google Scholar 

  56. N. Na, Y. Yamamoto, Massive parallel generation of indistinguishable single photons via the polaritonic superfluid to mott-insulator quantum phase transition. New J. Phys. 12(12), 123001 (2010)

    Google Scholar 

  57. G. Nardin, K.G. Lagoudakis, B. Pietka, F. Morier-Genoud, Y. Leger, B. Deveaud-Pledran, Selective photoexcitation of confined exciton-polariton vortices. Phys. Rev. B 82(7), 073303 (2010)

    Google Scholar 

  58. T. Nikuni, E. Zaremba, A. Griffin, Two-fluid dynamics for a bose–einstein condensate out of local equilibrium with the noncondensate. Phys. Rev. Lett. 83(1), 10–13 (1999)

    Article  ADS  Google Scholar 

  59. T. Ostatnicky, I.A. Shelykh, A.V. Kavokin, Theory of polarization-controlled polariton logic gates. Phys. Rev. B 81(12), 125319 (2010)

    Google Scholar 

  60. T.K. Paraiso, M. Wouters, Y. Leger, F. Morier-Genoud, B. Deveaud-Pledran, Multistability of a coherent spin ensemble in a semiconductor microcavity. Nat. Mater. 9(8), 655–660 (2010)

    Article  ADS  Google Scholar 

  61. S. Pigeon, I. Carusotto, C. Ciuti, Hydrodynamic nucleation of vortices and solitons in a resonantly excited polariton superfluid. Phys. Rev. B 83(14), 144513 (2011)

    Google Scholar 

  62. S. Pilati, S. Giorgini, N. Prokof’ev, Critical temperature of interacting bose gases in two and three dimensions. Phys. Rev. Lett. 100(14), 140405 (2008)

    Google Scholar 

  63. L. Pitaevskii, S. Stringari, Bose–Einstein Condensation. (Oxford University Press, Oxford, 2003)

    Google Scholar 

  64. D. Porras, C. Ciuti, J.J. Baumberg, C. Tejedor, Polariton dynamics and bose–einstein condensation in semiconductor microcavities. Phys. Rev. B 66(8), 085304 (2002)

    Google Scholar 

  65. A. Posazhennikova, Colloquium: Weakly interacting, dilute bose gases in 2d. Rev. Mod. Phys. 78(4), 1111–1134 (2006)

    Article  ADS  Google Scholar 

  66. N. Prokof’ev, O. Ruebenacker, B. Svistunov, Critical point of a weakly interacting two-dimensional bose gas. Phys. Rev. Lett. 87(27), 270402 (2001)

    Google Scholar 

  67. A. Recati, N. Pavloff, I. Carusotto, Bogoliubov theory of acoustic hawking radiation in bose–einstein condensates. Phys. Rev. A 80(4), 043603 (2009)

    Google Scholar 

  68. G. Roumpos, M.D. Fraser, A. Loffler, S. Hofling, A. Forchel, Y. Yamamoto, Single vortex-antivortex pair in an exciton-polariton condensate. Nat. Phys. 7(2), 129–133 (2011)

    Article  Google Scholar 

  69. D. Sarchi, V. Savona, Long-range order in the Bose–Einstein condensation of polaritons. Phys. Rev. B 75(11), 115326 (2007)

    Google Scholar 

  70. D. Sarkar, S.S. Gavrilov, M. Sich, J.H. Quilter, R.A. Bradley, N.A. Gippius, K. Guda, V.D. Kulakovskii, M.S. Skolnick, D.N. Krizhanovskii, Polarization bistability and resultant spin rings in semiconductor microcavities. Phys. Rev. Lett. 105(21), 216402 (2010)

    Google Scholar 

  71. V. Savona, Effect of interface disorder on quantum well excitons and microcavity polaritons. J. Phys. Condens. Matter 19(29), 295208 (2007)

    Google Scholar 

  72. M.O. Scully, M.S. Zubairy, Quantum optics. (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  73. I.A. Shelykh, R. Johne, D.D. Solnyshkov, G. Malpuech, Optically and electrically controlled polariton spin transistor. Phys. Rev. B 82(15), 153303 (2010)

    Google Scholar 

  74. A. Sinatra, C. Lobo, Y. Castin, The truncated wigner method for bose-condensed gases: limits of validity and applications. J. Phys. B Atom. Mol. Opt. Phys. 35(17), 3599 (2002)

    Google Scholar 

  75. D. Snoke, Polariton condensates - a feature rather than a bug. Nat. Phys. 4(9), 674–675 (2008)

    Article  Google Scholar 

  76. D. Snoke, P. Littlewood, Polariton condensates. Phys. Today 63(8), 42–47 (2010)

    Article  Google Scholar 

  77. R.M. Stevenson, V.N. Astratov, M.S. Skolnick, D.M. Whittaker, M. Emam-Ismail, A.I. Tartakovskii, P.G. Savvidis, J.J. Baumberg, J.S. Roberts, Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities. Phys. Rev. Lett. 85(17), 3680–3683 (2000)

    Article  ADS  Google Scholar 

  78. M.H. Szymanska, J. Keeling, P.B. Littlewood, Nonequilibrium quantum condensation in an incoherently pumped dissipative system. Phys. Rev. Lett. 96(23), 230602 (2006)

    Google Scholar 

  79. A.I. Tartakovskii, M. Emam-Ismail, R.M. Stevenson, M.S. Skolnick, V.N. Astratov, D.M. Whittaker, J.J. Baumberg, J.S. Roberts, Relaxation bottleneck and its suppression in semiconductor microcavities. Phys. Rev. B 62(4), R2283–R2286 (2000)

    Article  ADS  Google Scholar 

  80. F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, P. Schwendimann, Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons. Phys. Rev. B 56(12), 7554–7563 (1997)

    Article  ADS  Google Scholar 

  81. F. Tassone, Y. Yamamoto, Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B 59(16), 10830–10842 (1999)

    Article  ADS  Google Scholar 

  82. M. Trujillo-Martinez, A. Posazhennikova, J. Kroha, Nonequilibrium josephson oscillations in bose–einstein condensates without dissipation. Phys. Rev. Lett. 103(10), 105302 (2009)

    Google Scholar 

  83. S. Utsunomiya, L. Tian, G. Roumpos, C.W. Lai, N. Kumada, T. Fujisawa, M. Kuwata-Gonokami, A. Loeffler, S. Hoefling, A. Forchel, Y. Yamamoto, Observation of bogoliubov excitations in exciton-polariton condensates. Nat. Phys. 4(9), 700–705 (2008)

    Article  Google Scholar 

  84. D.F. Walls, G.J. Milburn, Quantum Optics. Springer-Verlag, Berlin (2008).

    Book  MATH  Google Scholar 

  85. E. Wertz, L. Ferrier, D.D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaitre, I. Sagnes, R. Grousson, A.V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys. 6(11), 860–864 (2010)

    Article  Google Scholar 

  86. E. Wertz, L. Ferrier, D.D. Solnyshkov, P. Senellart, D. Bajoni, A. Miard, A. Lemaitre, G. Malpuech, J. Bloch, Spontaneous formation of a polariton condensate in a planar gaas microcavity. Appl. Phys. Lett. 95(5), 051108 (2009)

    Google Scholar 

  87. M. Wouters, T.C.H. Liew, V. Savona, Energy relaxation in one-dimensional polariton condensates. Phys. Rev. B 82(24), 245315 (2010)

    Google Scholar 

  88. M. Wouters, I. Carusotto, Excitations in a nonequilibrium bose–einstein condensate of exciton polaritons. Phys. Rev. Lett. 99(14), 140402 (2007)

    Google Scholar 

  89. M. Wouters, I. Carusotto, Superfluidity and critical velocities in nonequilibrium bose–einstein condensates. Phys. Rev. Lett. 105(2), 020602 (2010)

    Google Scholar 

  90. M. Wouters, I. Carusotto, C. Ciuti, Spatial and spectral shape of inhomogeneous nonequilibrium exciton-polariton condensates. Phys. Rev. B 77(11), 115340 (2008)

    Google Scholar 

  91. M. Wouters, V. Savona, Stochastic classical field model for polariton condensates. Phys. Rev. B 79(16), (2009)

    Google Scholar 

  92. M. Wouters, V. Savona, Superfluidity of a nonequilibrium Bose–Einstein condensate of polaritons. Phys. Rev. B 81(5), 054508 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiel Wouters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wouters, M., Savona, V. (2012). Truncated Wigner Approximation for Nonequilibrium Polariton Quantum Fluids. In: Timofeev, V., Sanvitto, D. (eds) Exciton Polaritons in Microcavities. Springer Series in Solid-State Sciences, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24186-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24186-4_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24185-7

  • Online ISBN: 978-3-642-24186-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics