Skip to main content

Nanomedicine Pillars and Monitoring Nano–biointeractions

  • Chapter
  • First Online:

Part of the book series: NanoScience and Technology ((NANO))

Abstract

The current revolution in medicine is strongly associated with the availability of new tools, methods and materials that enable the visualization and handling of molecules and even atoms in order to explore the etiology of many diseases and foster the insights within the biological nano-world. This chapter describes the main nanomedicine pillars that involve nanodiagnostics, targeted drug delievery and regenerative medicine. It gives an overview of key nanotechnologies that will advance the diagnosis and treatment of various diseases. Several experiments are employed to help the reader to understand how nanomedicine can advance mainly the study of mechanisms of bio and non- bio interactions for the design and development of highly performed implants. The hazards and risks for nanomedicines and the future challenges and perspectives of their application in clinical practice will also be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Kawasaki, A. Player, Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer, Nanomed. Nanotechnol. Biol. Med. 1, 101–109 (2005)

    Article  Google Scholar 

  2. S. Campos, R. Penson, R. Aisha, A. Mays, S. Ross, et al., The clinical utility of liposomal doxorubicin in recurrent ovarian cancer, Gynecol Oncol. 81, 206–212 (2001)

    Article  Google Scholar 

  3. A. Nagayasu, K. Uchiyama, H. Kiwada, The size of liposomes: A factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs, Adv. Drug Deliv. Rev. 40, 75–87 (1999)

    Article  Google Scholar 

  4. P. Goyal, K. Goyal, S. Kumar, A. Singh, et al., Liposomal drug delivery systems – Clinical applications, Acta Pharm. 55, 1–25 (2005)

    Google Scholar 

  5. A. Kim, E. Lee, S. Choi, C. Kim, In vitro and in vivo transfection efficiency of a novel ultradeformable cationic liposome, Biomaterials 25, 305–313 (2004)

    Article  Google Scholar 

  6. V. Sirani, D. Koktysh, B. Yun, R. Matts, et al., Collagen coating promotes biocompatibility of semiconductor nanoparticles in stratifield LBL films, Nano Lett. 3, 1177–1182 (2003)

    Article  ADS  Google Scholar 

  7. Y. Zhang, N. Kohler, M. Zhang, Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake, Biomaterials 23, 1553–1561 (2002)

    Article  Google Scholar 

  8. O. Salata, Applications of nanoparticles in biology and medicine, J. Nanobiotechnol. 2, 3–6 (2004)

    Article  Google Scholar 

  9. K. Win, S. Feng, In vitro and in vivo studies on vitamin E TPGS-emulsified poly (d,l-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation, Biomaterials 27, 2285–2291 (2006)

    Article  Google Scholar 

  10. Y. Chen, C. Tsai, P. Huang, M. Chang, et al., Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lungtumor model, Mol. Pharm. 4, 713–722 (2007)

    Article  Google Scholar 

  11. B. Wilson, M. Samanta, K. Santh, K. Kumar, et al., Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease, Brain Res. 1200, 159–168 (2008)

    Article  Google Scholar 

  12. A. Shahverdi, A. Fakhimi, H. Shahverdi, S. Minaian, Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli, J. Nanomed. 3, 168–171 (2007)

    Article  Google Scholar 

  13. A. Kumari, S.K. Yadav, S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems, Colloids Surf. B Biointerfaces 75, 1–18 (2010)

    Article  Google Scholar 

  14. K. Unfried, C. Albrecht, L. Klotz, A. Von Mikecz, A. Grether, et al., Cellular responses to nanoparticles: Target structures and mechanisms, Nanotoxicology 1, 52–71 (2007)

    Article  Google Scholar 

  15. D. Tomalia, Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging, Nanomed. Nanotechnol. Biol. Med. 2, 309 (2006)

    Article  Google Scholar 

  16. A. Caminade, R. Laurent, J. Majoral, Characterization of dendrimers, Adv. Drug Deliv. Rev. 57, 2130–2146 (2005)

    Article  Google Scholar 

  17. S. Svenson, D. Tomalia, Dendrimers in biomedical applications – Reflections on the field, Adv. Drug Deliv. Rev. 57, 2106–2129 (2005)

    Article  Google Scholar 

  18. K. Ong, A. Jenkins, R. Cheng, D. Tomalia, et al., Dendrimer enhanced immunosensors for biological detection, Anal. Chim. Acta. 444, 143–148 (2001)

    Article  Google Scholar 

  19. U. Boas, P. Hegaard, Dendrimers in drug research, Chem. Soc. Rev. 33, 43–63 (2004)

    Article  Google Scholar 

  20. N. Kam, M. O’Connel, J. Wisdom, H. Dai, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction, Proc. Natl. Acad. Sci. USA 102, 11600–11605 (2005)

    Article  ADS  Google Scholar 

  21. P. Tran, L. Zhang, T. Webster, Carbon nanofibers and nanotubes in regenerative medicine, Adv. Drug Deliv. Rev. 61, 1097–1114 (2009)

    Article  Google Scholar 

  22. N. Kam, Z. Dai, Carbon nanotubes as intracellular transporters for proteins and DNA: An investigation of the uptake mechanism and pathway, Angew. Chem. Internat. Ed. 45, 577–581 (2006)

    Article  Google Scholar 

  23. A. Bianco, K. Kostarelos, M. Prato, Applications of carbon nanotubes in drug delivery, Curr. Opin. Chem. Biol. 9, 674–679 (2005)

    Article  Google Scholar 

  24. J. Stoltz, Regenerative medicine: from engineering to clinical applications, J. Biomech. 39, 54 (2006)

    Article  Google Scholar 

  25. S. Sundelacruz, D. Kaplan, Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine, Semin. Cell Dev. Biol. 20, 646–655 (2009)

    Article  Google Scholar 

  26. P. Ma, Tissue engineering, in Encyclopedia of Polymer Science and Technology, vol. 12, 3rd. edn. Ed. by J.I. Kroschwitz (Wiley, Hoboken, NJ, 2005), pp. 261–291

    Google Scholar 

  27. S. Stephan, S. Ball, M. Williamson, D. Bax, et al., Cell – matrix biology in vascular tissue engineering, J. Anat. 209, 495–502 (2006)

    Article  Google Scholar 

  28. B. Isenberg, C. Williams, R. Tranquillo, Small, diameter artificial arteries engineered in vitro, J. Circ. Res. 98, 25–35 (2006)

    Article  Google Scholar 

  29. B. Ratner, Proteins controlled with precision at organic, polymeric, and biopolymer interfaces for tissue engineering and regenerative medicine, Principles Regenerat. Med. 1, 734–742 (2008)

    Article  Google Scholar 

  30. E. Anitua, M. Sanchez, G. Orive, Potential of endogenous regenerative technology for in situ regenerative medicine, Adv. Drug Deliv. Rev. 62, 741–752 (2010)

    Article  Google Scholar 

  31. M. Murata, S. Tohyama, K. Fukuda, Impacts of recent advances in cardiovascular regenerative medicine on clinical therapies and drug discovery, J. Pharmacol. Therapeut. 126, 109–118 (2010)

    Article  Google Scholar 

  32. Shupe T, Petersen B. Potential applications for cell regulatory factors in liver progenitor cell therapy. Inter J of Biochemistry & Cell Biology, 43, 214–221 (2011)

    Article  Google Scholar 

  33. M. Furth, A. Atala, Current and future perspectives of regenerative medicine, in Principles of Regenerative Medicine, 1st edn. (Academic, New York, 2008), pp. 2–15

    Google Scholar 

  34. N. Kimelman, G. Pelled, G. Helm, et al., Review: gene-and stem cell-based therapeutics for bone regeneration and repair, Tissue Eng. 13, 1135–1150 (2007)

    Article  Google Scholar 

  35. S. Li, L. Wang, H. Jiang, et al., Stem cell engineering for treatment of heart diseases: potentials and challenges, Cell Biol. Int. 33, 255–267 (2009)

    Article  Google Scholar 

  36. D. Sheyn, O. Mizrahi, S. Benjamin, Z. Gazit, et al., Genetically modified cells in regenerative medicine and tissue engineering, Adv. Drug Deliv. Rev. 62, 683–698(2010)

    Article  Google Scholar 

  37. R. Jaenisch, R. Young, Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming, Cell 132, 567–582 (2008)

    Article  Google Scholar 

  38. B. Feng, J. Ng, J. Heng, H. Ng, Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells, Cell Stem Cell 4, 301–312 (2009)

    Article  Google Scholar 

  39. I. Martin, D. Wendt, M. Heberer, The role of bioreactors in tissue engineering, Trends Biotechnol. 22, 80–86 (2004)

    Article  Google Scholar 

  40. A. Khademhosseini, R. Langer, J. Borenstein, J. Vacanti, Microscale technologies for tissue engineering and biology, Proc. Natl. Acad. Sci. USA 103, 2480–2487 (2006)

    Article  ADS  Google Scholar 

  41. J. Schakenraad, H. Busscher, Cell–polymer interactions: The influence of protein adsorption, Colloids Surf. 42, 331–343 (1989)

    Google Scholar 

  42. P. Yang, N. Huang, Y.X. Leng, J.Y. Chen, K.Y. Fu, S.C.H. Kwok, P.K. Leng, Y. Chu, Activation of platelets adhered on amorphous hydrogenated carbon films synthesized by plasma immersion ion implantation-deposition, Biomaterials 24, 2821–29 (2003)

    Article  Google Scholar 

  43. http://klemkelab.ucsd.edu/research/cell.html

  44. V. Shahin, N. Barrera, Providing unique insight into cell biology via atomic force microscopy, Int. Rev. Cytol. 265, 227–252 (2008)

    Article  Google Scholar 

  45. N. Santos, M. Castanho, An overview of the biophysical applications of atomic force microscopy, Biophys. Chem. 107, 133–149 (2004)

    Article  Google Scholar 

  46. C. Yip, Atomic force microscopy of macromolecular interactions, Curr. Opin. Struct. Biol. 11, 567–572 (2001)

    Article  MathSciNet  Google Scholar 

  47. D. Johnson, N. Hilal, R. Bowen, Basic principles of atomic force microscopy, Atom. Force Microsc. Process Eng. 1–30 (2009)

    Google Scholar 

  48. https://www.uclan.ac.uk/schools/computingengineeringphysical

  49. D. Butterfield, T. Reed, F. Shelley, S. Newman, R. Sultana, Roles of amyloid β-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment, Free Radic. Biol. Med. 43, 658–677 (2007)

    Article  Google Scholar 

  50. S. Sun, Y. Yue, X. Huang, D. Meng, Protein adsorption on blood-contact membranes, J. Membrane Sci. 222, 3–18 (2003)

    Article  Google Scholar 

  51. X.D. Zhu, H.S. Fan, Y.M. Xiao, et al., Effect of surface structure on protein adsorption to biphasic calcium-phosphate ceramics in vitro and in vivo, Acta Biomater. 5, 1311–1318 (2009)

    Article  Google Scholar 

  52. P. Cacciafesta, A. Humphris, K. Jandt, M. Miles, Human plasma fibrinogen adsorption on ultraflat titanium oxide surfaces studied with atomic force microscopy, Langmuir 16, 8167–8175 (2000)

    Article  Google Scholar 

  53. J. Ortega-Vinuesa, P. Tengvall, et al., Aggregation of HSA, igg, and fibrinogen on methylated silicon surfaces, J. Colloid Interface Sci. 207, 228–239 (1998)

    Article  Google Scholar 

  54. K. Mitsakakis, S. Lousinian, S. Logothetidis, Early stages of human plasma proteins adsorption probed by atomic force microscope, Biomol. Eng. 24, 119–124 (2007)

    Article  Google Scholar 

  55. S. Logothetidis, Haemocompatibility of carbon based thin films, Diamond Relat. Mater. 16, 1847–1857 (2007)

    Article  Google Scholar 

  56. S. Lousinian, S. Kassavetis, S. Logothetidis, Surface and temperature effect on fibrinogen adsorption to amorphous hydrogenated carbon thin films, Diamond Relat. Mater. 16, 1868–1874 (2007)

    Article  Google Scholar 

  57. J.H. Hartwig, Platelet structure, in Platelets, ed. by A.D. Michelson (Academic, New York, 2002), pp. 37–45

    Google Scholar 

  58. T.I. Okpalugo, A.A. Ogwu, P.D. Maguire, J.A. McLaughlin, Platelet adhesion on silicon modified hydrogenated amorphous carbon films, Biomaterials 25, 239–245 (2004)

    Article  Google Scholar 

  59. V. Karagkiozaki, S. Logothetidis, S. Lousinian, G. Giannoglou, Impact of surface electric properties of carbon-based thin films on platelets activation for nano-medical and nano-sensing applications, Int. J. Nanomed. 3, 461–469 (2008)

    Google Scholar 

  60. T.S. Tsapikouni, Y.F. Missirlis, pH and ionic strength effect on single fibrinogen molecule adsorption on mica studied with AFM, Colloid Surf. B: Biointerfaces 57, 89–96 (2007)

    Article  Google Scholar 

  61. Noy A. Interactions at solid-fluid interfaces, In: Liu, Xiang Yang; De Yoreo, James J. (Editors), Nanoscale structure and assembly at solid-fluid interfaces. Kluwer Academic Publishers, USA. Volume I, 2004, p. 57–64.

    Google Scholar 

  62. R. Mandic, C. Opper, J. Krappe, W. Wesemann, Platelet sialic acid as a potential pathogenic factor in coronary heart disease, Thrombosis Res. 106, 137–141 (2002)

    Article  Google Scholar 

  63. D. Müller, K. Anderson, Biomolecular imaging using atomic force microscopy, Trends Biotechnol. 20, 545–49 (2002)

    Article  Google Scholar 

  64. M. Hussain, A. Agnihotri, C. Siedlecki, AFM imaging of ligand binding to platelet integrin alphaiibbeta3 receptors reconstituted into planar lipid bilayers, Langmuir 19(21), 6979–86 (2005)

    Article  Google Scholar 

  65. V. Karagkiozaki, S. Logothetidis, G. Giannoglou, Advances in stent coating technology via nanotechnology tools and process, Eur. J. Nanomed. 1, 24–28 (2008)

    Article  Google Scholar 

  66. P.D. Maguire, J.A. McLaughlin, T.I.T. Okpalugo, P. Lemoine, P. Papakonstantinou, E.T. McAdams, M. Needham, A. Ogwu, et al., Mechanical stability, corrosion performance and bioresponse of amorphous diamond-like carbon for medical stents and guidewires, Diamond Relat. Mater. 14, 1277–88 (2005)

    Article  Google Scholar 

  67. V. Karagkiozaki, S. Logothetidis, N. Kalfagiannis, S. Lousinian, G.A.F.M. Giannoglou, Probing platelets activation behavior on titanium nitride nanocoatings for biomedical applications, J. Nanomed. Nanotechnol. Biol. Med. 5, 64–72 (2009)

    Article  Google Scholar 

  68. V. Karagkiozaki, S. Logothetidis, A. Laskarakis, G. Giannoglou, S.A.F.M. Lousinian, Study of the thrombogenicity of carbon-based coatings for cardiovascular applications, Mater. Sci. Eng. B 152, 16–21 (2008)

    Article  Google Scholar 

  69. V. Karagkiozaki, S. Logothetidis, S. Kassavetis, S. Lousinian, Nanoscale characterization of biological and mechanical profile of carbon nanocoatings for stents, Eur. J. Nanomed. 2, 14–21 (2009)

    Google Scholar 

  70. S. Goodman, T. Grasel, S. Cooper, R.J. Albrecht, Biomed. Mater. Res. 23, 105 (1989)

    Article  Google Scholar 

  71. V. Karagkiozaki, S. Logothetidis, S. Kassavetis, G. Giannoglou, Nanomedicine for the reduction of the thrombogenicity of stent coatings, Int. J. Nanomed. 5, 239–248 (2010)

    Google Scholar 

  72. S. Choudhary, M. Berhe, K. Haberstroh, T. Webster, Increased endothelial and vascular smooth muscle cell adhesion on nanostructured titanium and CoCrMo, Int. J. Nanomed. 1, 41–49 (2006)

    Article  Google Scholar 

  73. P. Yang, N. Huang, Y.X. Leng, J.Y. Chen, K.Y. Fu, S.C.H. Kwok, Y. Leng, P.K. Chu, Activation of platelets adhered on amorphous hydrogenated carbon films synthesized by plasma immersion ion implantation-deposition, Biomaterials 24, 2821–29 (2003)

    Article  Google Scholar 

  74. L. Leung, Role of thrombospondin in platelet aggregation, J. Clin. Invest. 74, 1764–1772 (1984)

    Article  ADS  Google Scholar 

  75. J. Coligan, H. Slayter, Structure of thrombospondin, J. Biol. Chem. 259, 3944–3948 (1984)

    Google Scholar 

  76. H.C. Fischer, W.C. Chan, Nanotoxicity: the growing need for in vivo study, Curr. Opin. Biotechnol. 18, 565–571 (2007)

    Article  Google Scholar 

  77. P. Borm, F.C. Klaessig, T.D. Landry, B. Moudgil, et al., Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles, Toxicol. Sci. 90, 23–32 (2006)

    Article  Google Scholar 

  78. A. Nel, T. Xia, L. Maedler, N. Li, Toxic potential of materials at the nanolevel, Science 311, 622–627 (2006)

    Article  ADS  Google Scholar 

  79. T. Xia, M. Kovochich, J. Brant, M. Hotze, et al., Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm, Nano Lett. 6, 1794–1807 (2006)

    Article  ADS  Google Scholar 

  80. S. Caruthers, S. Wickline, G. Lanza, Nanotechnological applications in medicine, Curr. Opin. Biotechnol. 18, 26–30 (2007)

    Article  Google Scholar 

  81. G. Oberdörster, A. Maynard, et al., Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy, Particle Fibre Toxicol. 2, 1–35 (2005)

    Article  Google Scholar 

  82. J. Ryman Rasmussen, P. Jessica, et al., Penetration of intact skin by quantum dots with diverse physicochemical properties, Toxic. Sci. 91, 159–165 (2006)

    Article  Google Scholar 

  83. S. Sinkle, J. Antonini, B. Rich, et al., Skin as a route of exposure and sensitization in chronic Beryllium disease, Environ. Health Perspect. 111, 1202–1218 (2003)

    Article  Google Scholar 

  84. J. Ryman-Rasmussen, J. Riviere, N. Monteiro-Riviere, Variables influencing interactions of untargeted quantum dots nanoparticles with skin cells and identification of biochemical modulators, Nano Lett. 7, 1344–134 (2007)

    Article  ADS  Google Scholar 

  85. Z. Liu, W. Cai, L. He, N. Nakayama, K. Chen, X. Sun, et al., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice, Nat. Nano 2, 47–52 (2007)

    Article  Google Scholar 

  86. S. Hong, P.R. Leroueil, E.K. Janus, J.L. Peters, M.M. Kober, et al., Interaction of polycationic polymers with supported lipid biolayers and cells: Nanoscale hole formation and enhanced membrane permeability, Bioconj. Chem. 17, 728–734 (2006)

    Article  Google Scholar 

  87. P.R. Leroueil, S. Hong, A. Mecke, J.R. Baker, et al., Nanoparticle interaction with biological membranes: Does nanotechnology present a Janus face, Acc. Chem. Res. 40, 335–342 (2007)

    Article  Google Scholar 

  88. D. Drobne, V. Kralj-Iglic, Lipid membranes as tools in nanotoxicity studies, Adv. Planar Lipid Bilayers Liposomes. 10, 121–134 (2009)

    Article  Google Scholar 

  89. M. Geiser, B. Rothen-Rutishauser, N. Kapp, S. Schurch, et al., Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells, Environ. Health Perspect. 113, 1555–1560 (2005)

    Article  Google Scholar 

  90. L. Liu, T. Takenaka, A. Zinchenko, N. Chen, et al., Cationic silica nanoparticles are efficiently transferred into mammalian cells, Int. Symp. Micro-Nano Mechatron. Hum. Sci. 1–2, 281–285 (2007)

    Article  Google Scholar 

  91. M. Chen, A. von Mikecz, Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles, Exp. Cell Res. 305, 51–62 (2005)

    Article  Google Scholar 

  92. N. Singh, B. Manshian, G. Jenkins, et al., nanogenotoxicology: The DNA damaging potential of engineered nanomaterials, Biomaterials 30, 3891–3914 (2009)

    Article  Google Scholar 

  93. N. Li, C. Sioutas, A. Cho, et al., Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage, Environ. Health Perspect. 111, 455–460 (2003)

    Article  Google Scholar 

  94. Y. Pan, A. Leifert, D. Ruau, S. Neuss, et al., Gold nanoparticles of diameter 1,4 nm trigger necrosis by oxidative stress and mitochondrial damage, Small 5, 2067–2076 (2009)

    Article  Google Scholar 

  95. L. Canesi, C. Ciacci, D. Vallotto, G. Gallo, A. Marcomini, G. Pojana, In vitro effects of suspensions of selected nanoparticles (C60 fullerene, tio2, sio2) on Mytilus hemocytes, Aquat. Toxicol. 31(96), 151–158 (2010)

    Article  Google Scholar 

  96. A. Nel, et al., Toxic potential of materials at the nanolevel, Science 311, 622–627 (2006)

    Article  ADS  Google Scholar 

  97. A. Maynard, Nanotechnology: assessing the risks, Nano Today. 1, 22–33 (2006)

    Article  Google Scholar 

  98. S. Naqvi, M. Samim, et al., Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress, Int. J. Nanomed. 5, 983–989 (2010)

    Article  Google Scholar 

  99. M. Auffan, J. Rose, J. Bottero, et al., Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective, Nat. Nanotechnol. 4, 634–642 (2009)

    Article  ADS  Google Scholar 

  100. C. Poland, R. Duffin, I. Kinloch, et al., Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study, Nat. Nanotechnol. 3, 423–428 (2008)

    Article  Google Scholar 

  101. K. Kostarelos, The long and short of carbon nanotube toxicity, Nat. Biotechnol. 26, 774–776 (2008)

    Article  Google Scholar 

  102. V. Kagan, N. Konduru, W.W. Feng, et al., Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation, Nat. Nanotechnol. 1–6 (2010)

    Google Scholar 

  103. P. Dwivedi, A. Misra, R. Shanker, M. Das, Are nanomaterials a threat to the immune sysyem? Nanotoxicology 3, 19–26 (2009)

    Article  Google Scholar 

  104. G. Tepe, J. Schmehl, P. Hans, et al., Reduced thrombogenicity of nitinol stents – In vitro evaluation of different surface modifications and coatings, Biomaterials 27, 643–650 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Karagkiozaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karagkiozaki, V., Logothetidis, S., Vavoulidis, E. (2012). Nanomedicine Pillars and Monitoring Nano–biointeractions. In: Logothetidis, S. (eds) Nanomedicine and Nanobiotechnology. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24181-9_2

Download citation

Publish with us

Policies and ethics