Skip to main content

Nanomedicine: The Medicine of Tomorrow

  • Chapter
  • First Online:
Nanomedicine and Nanobiotechnology

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Nowadays nanotechnology has become a technological field with great potential since it can be applied in almost every aspect of modern life. One of the sectors where nanotechnology is expected to play a vital role is the field of medical science. The interaction of nanotechnology with medicine gave birth to a completely new scientific field called nanomedicine. Nanomedicine is a field that aims to use the nanotechnology tools and principles in order to improve human health in every possible way. Nanotechnology provides monitoring tools and technology platforms that can be used in terms of detection, diagnostic, bioanalysis and imaging. New nanoscale drug-delivery systems are constantly designed with different morphological and chemical characteristics and unique specificity against tumours, offering a less harmful approach alternative to chemo- and radiotherapies. Furthermore, nanotechnology has led to great breakthroughs in the field of tissue engineering, making the replacement of damaged tissues and organs a much feasible procedure. The thorough analysis of bio and non-bio interactions achieved by versatile nanotools is essential for the design and development of highly performed medical implants. The continuous revolution in nanotechnology will result in the fabrication of nanostructures with properties and functionalities that can benefit patient’s physiology faster and more effectively than conventional medical procedures and protocols. The number of nanoscale therapeutical products is rapidly growing since more and more nanomedical designs are reaching the global market. However the nanotoxic impact that these designs can have on human health is an era that requires still more investigation. The development of specific guidance documents at a European level for the safety evaluation of nanotechnology products in medicine is strongly recommended and the need for further research in nanotoxicology is identified. Ethical and moral concerns also need to be addressed in parallel with the new developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Park, “Nanotechnology: What it can do for drug delivery”, perspective, J. Contr. Release 120, 1–3 (2007)

    Article  Google Scholar 

  2. W.H. de Jong, B. Roszek, R.E. Geertsma, “Nanotechnology in medical applications: possible risks for human health”, RIVM report 265001002, 2005. RIVM, National Institute for Public Health and the Environment, Bilthoven, The Netherlands, 2005

    Google Scholar 

  3. B. Roszek, W.H. de Jong, R.E. Geertsma, “Nanotechnology for medical applications: state-of-the-art in materials and devices”, RIVM report 265001001, 2005. RIVM, National Institute for Public Health and the Environment, Bilthoven, The Netherlands, 2005

    Google Scholar 

  4. http://www.nec.com/global/corp/H0602.html, http://www.gatech.edu/news-room/release, www.nanotech-now.com/news.cgi?story_id=10065

  5. M. Foldvari, M. Bagonluri, “Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues”, Nanomed.: Nanotechnol. Biol. Med. 4(3), 183–200 (2008)

    Google Scholar 

  6. H.S. Mansur, “Quantum dots and nanocomposites”, Wiley Interdiscipl. Rev.: Nanomed. Nanobiotechnol. (2)2, 113–129 (2010)

    Google Scholar 

  7. L.D. True, X. Gao, “Quantum dots for molecular pathology: Their time has arrived”, J. Mol. Diagnostics 9(1), 7–11 (2007)

    Article  Google Scholar 

  8. S. Svenson, “Dendrimers as versatile platform in drug delivery applications”, Eur. J. Pharm. Biopharm. 71(3), 445–462 (2009)

    Article  Google Scholar 

  9. B. Haley, E. Frenkel, “Nanoparticles for drug delivery in cancer treatment”, Urol. Oncol.: Semin. Original Investig. 26(1), 57–64 (2008)

    Google Scholar 

  10. A. Shahverdi, A. Fakhimi, H. Shahverdi, S. Minaian, “Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli”, Nanomed.: Nanotechnol. Biol. Med. 3(2) 168–171 (2007)

    Google Scholar 

  11. G.A. Silva, “Introduction to nanotechnology and its applications to medicine”, Surg. Neurol. 61, 216 (2004)

    Article  Google Scholar 

  12. D. Khatayevich, M. Gungormus, H. Yazici, C. So, S. Cetinel, M. Hong, A. Jen, C. Tamerler, M. Sarikaya, “Biofunctionalization of materials for implants using engineered peptides”, Acta Biomater. 6(12), 4634–4641 (2010)

    Article  Google Scholar 

  13. http://www.sciencemuseum.org.uk/antenna/nano/skin/123.asp (a), http://ltfn.physics.auth.gr/facilities/xrr.html (b), http://www.aist-nt.com/450/plasmid-in-buffer/ (c)

  14. S. Logothetidis, M. Gioti, S. Lousinian, S. Fotiadou, “Haemocompatibility studies on carbon-based thin films by ellipsometry”, Thin Solid Films 482(1–2), 126 (2004)

    Google Scholar 

  15. H. Elwing, “Protein absorption and ellipsometry in biomaterial research”, Biomaterials 19, 397 (1998)

    Article  Google Scholar 

  16. E. Garcia-Caurel, J. Nguyen, L. Schwartz, B. Drévillon, “Application of FTIR ellipsometry to detect and classify microorganisms”, Thin Solid Films 455, 722 (2004).

    Article  ADS  Google Scholar 

  17. E. Garcia-Caurel, J. Nguyen, L. Schwartz, B. Drévillon, “Moving ellipsometry from materials to medicine”, III–Vs Rev. 17, 4 (2004)

    Google Scholar 

  18. H. Arwin, “Application of ellipsometry techniques to biological materials”, Thin Solid Films 519(9), 2589–2592, (2011)

    Article  ADS  Google Scholar 

  19. Nanomedicine, An ESF – European Medical Research Councils (EMRC) Forward Look report 2005, (http://www.nanoforum.org)

  20. K. Mitsakakis, S. Lousinian, S. Logothetidis, “Early stages of human plasma proteins adsorption probed by atomic force microscope”, Biomol. Eng. 24(1), 119–124, (2007)

    Article  Google Scholar 

  21. http://www.molec.com/what_is_afm.html

  22. http://www.plant.wageningen-ur.nl/news/2001-10_en.htm; http://www.spacedaily.com/news/nanotech-05zzzzg.html; http://www.biomaterial.co.jp/en/products/

  23. C. Wei, “Highlights of the first annual meeting of the American Academy of Nanomedicine”, Nanomed.: Nanotechnol. Biol. Med. 1, 351 (2005)

    Google Scholar 

  24. J. Maienschein, “Regenerative medicine’s historical roots in regeneration, transplantation and translation”, Dev. Biol. (Article in Press), (2010).

    Google Scholar 

  25. J. Vacanti, “Tissue engineering and regenerative medicine: from first principles to state of the art”, J. Pediatr. Surg. 45, 291–294 (2010)

    Article  Google Scholar 

  26. E. Anitua, M. Sanchez, G. Orive, “Potential of endogenous regenerative technology for in situ regenerative medicine”, Adv. Drug Deliv. Rev. 62(7–8), 741–752 (2010)

    Article  Google Scholar 

  27. D.L. Borjesson, J.F. Peroni, “The regenerative medicine laboratory: facilitating stem cell therapy for equine disease”, Clin. Lab. Med. 31(1), 109–123, (2011)

    Article  Google Scholar 

  28. D. Sheyn, O. Mizrahi, S. Benjamin, Z. Gazit, G. Pelled, D. Gazit, “Genetically modified cells in regenerative medicine and tissue engineering”, Adv. Drug Deliv. Rev. 62(7–8), 683–698, (2010)

    Article  Google Scholar 

  29. I. Martin, D. Wendt, M. Heberer, “The role of bioreactors in tissue engineering”, Trends Biotechnol. 22(2), 80–86, (2004)

    Article  Google Scholar 

  30. Y. Martin, P. Vermette, “Bioreactors for tissue mass culture: Design, characterization and recent advances”, Biomaterials 26, 7481–7503, (2005)

    Article  Google Scholar 

  31. A.B. Yeatts, J.P. Fisher, “Bone tissue engineering bioreactors: Dynamic culture and the influence of shear stress”, Bone 48, 171–181, (2011)

    Article  Google Scholar 

  32. C. Van Blitterswijk, P. Thompsen, J. Hubbell, R. Cancedda, A. Lindahl, J.D. De Bruijn, J. Sohier, D.F. Williams, Tissue Engineering, Chapter 16: Bioreactors for tissue engineering, 483–506, (Academic, New York, 2008).

    Google Scholar 

  33. A. Robert, J.D. Freitas, “What is nanomedicine?”, Nanomed.: Nanotechnol. Biol. Med. 1(2) (2005)

    Google Scholar 

  34. R.F. Service, “Nanotechnology takes aim at cancer”, Science 310(5751), 1132 (2005).

    Google Scholar 

  35. M.M. Stevens, J.H. George, “Exploring and engineering the cell surface interface”, Science 310(5751), 1135 (2005)

    Google Scholar 

  36. V.P. Zharov, J.W. Kim, et al.,, “Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy”, Nanomed.: Nanotechnol. Bio. Med. 1, 326 (2005)

    Google Scholar 

  37. G. Korpanty, et al., “Targeting of VEGF-mediated angiogenesis to rat myocardium using ultrasonic destruction of microbubbles”, Gene Ther. 12, 1305 (2005)

    Article  Google Scholar 

  38. A.C. Morton, D. Crossman, J. Gunn, (2004) The influence of physical stent parameters upon restenosis, Pathologie Biologie 52, 196–205 (2004)

    Article  Google Scholar 

  39. X. Chen, K. Fujise, “Restenosis: Emerging molecular targets. Going beyond drug-eluting stents”, Drug Discov. Today: Dis. Mech./Cardiovasc. Dis. 2(I) (2005)

    Google Scholar 

  40. http://www.pharmsci.neu.edu/researchcenters/center_cardiotargeting.html

  41. C. Zandonella, “The tiny toolkit”, Nature 423, 10–12 (2003)

    Article  ADS  Google Scholar 

  42. I. Brigger, C. Dubernet, P. Couvreur, “Nanoparticles in cancer therapy and diagnosis”, Adv. Drug Deliv. Rev. 54, 631–651 (2002)

    Article  Google Scholar 

  43. T.K. Jain, S.P. Foy, B. Erokwu, S. Dimitrijevic, C.A. Flask, V. Labhasetwar, “Magnetic resonance imaging of multifunctional pluronic stabilized iron-oxide nanoparticles in tumor-bearing mice”, Biomaterials, 30(35), 6748–6756, (2009)

    Article  Google Scholar 

  44. D.E. Sosnovik, M. Nahrendorf, R. Weissleder, “Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications”, Basic Res. Cardiol. 103(2), 122–130, (2008)

    Article  Google Scholar 

  45. B. Bonnemain, “Superparamagnetic agents in magnetic resonance imaging: physiochemical characteristics and clinical applications – a review”, J. Drug Target 6, 167–174 (1998)

    Article  Google Scholar 

  46. T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann, B. Von Rechenberg, “Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system”, J. Magn. Magn. Mater. 293(1) 483–496 (2005)

    Article  ADS  Google Scholar 

  47. E.S. Kawasaki, T.A. Player, “Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer”, Nanomed.: Nanotechnol. Biol. Med. 1, 101–109 (2005)

    Google Scholar 

  48. C. Tachung, P.E. Yih, C. Wie, “Nanomedicine in cancer treatment”, Nanomed.: Nanotechnol. Biol. Med. 1, 191–92 (2005)

    Google Scholar 

  49. V. Zharov, V. Galitovsky, M. Viegas, “Photothermal detection of local thermal effects during selective nanophotothermolysis”, Appl. Phys. Lett. 83, 4897 (2003)

    Article  ADS  Google Scholar 

  50. V.P. Zharov, V. Galitovsly, M. Viegas, “Photothermal guidance of selective photothermolysis with nanoparticles”, Proc. SPIE 5319, 291 (2004)

    Article  ADS  Google Scholar 

  51. D.P. O’Neal, L.R. Hirsch, N.J. Halas, J.D. Payne, J.L. West, “Photothermal tumor ablation in mice using near infrared-absorbing nanoparticles”, Cancer Lett. 209, 171 (2004)

    Article  Google Scholar 

  52. J. Bradbury, “Nanoshell destruction of inoperable tumors”, Lancet Oncol. 4, 711 (2003)

    Article  Google Scholar 

  53. X. Huang, M.A. El-Sayed, “Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy”, J. Adv. Res. 1(1), 13–28, (2010)

    Article  Google Scholar 

  54. www.euronanotechnews.com

  55. Willems & van den Wildenberg, NanoRoadMap Project, October 2004, (http://www.nanoroadmap.it/sectoral%20reports/sect%20report%20health.PDF)

  56. A. Hett et al., “Nanotechnology: Small matter, many unknowns”, Swiss Reinsurance Company (2004) (http://www.swissre.com/INTERNET/pwswpspr.nsf/fmBookMarkFrameSet?ReadForm&BM=./vwAllbyIDKeyLu/ulur-5yaffs?OpenDocument)

  57. Y. Pan, A. Leifert, D. Ruau, S. Neuss, J. Bornemann, G. Schmid, W. Brandau, U. Simon, W. Jahnen-Deschent, “Gold nanoparticles of diameter 1,4 nm trigger necrosis by oxidative stress and mitochondrial damage”, Small 5(18), 2067–2076, (2009)

    Article  Google Scholar 

  58. N. Singh, B. Manshian, G. Jenkins, S. Griffiths, P. Williams, T. Maffeis, C. Wright, S. Doak, “NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials”, Biomaterials 30, 3891–3914, (2009)

    Article  Google Scholar 

  59. M.C. Roco, “Nanotechnology: convergence with modern biology and medicine”, Curr. Opin. Biotechnol. 14, 337 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Logothetidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Logothetidis, S. (2012). Nanomedicine: The Medicine of Tomorrow. In: Logothetidis, S. (eds) Nanomedicine and Nanobiotechnology. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24181-9_1

Download citation

Publish with us

Policies and ethics