An Asymmetric Fingerprinting Scheme Based on Tardos Codes

  • Ana Charpentier
  • Caroline Fontaine
  • Teddy Furon
  • Ingemar Cox
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6958)


Asymmetric fingerprinting protocols are designed to prevent an untrustworthy Provider incriminating an innocent Buyer. These protocols enable the Buyer to generate their own fingerprint by themself, and ensure that the Provider never has access to the Buyer’s copy of the Work. Until recently, such protocols were not practical because the collusion-resistant codes they rely on were too long. However, the advent of Tardos codes means that the probabilistic collusion-resistant codes are now sufficiently short that asymmetric fingerprint codes should, in theory, be practical.

Unfortunately, previous asymmetric fingerprinting protocols cannot be directly applied to Tardos codes, because generation of the Tardos codes depends on a secret vector that is only known to the Provider. This knowledge allows an untrustworthy Provider to attack traditional asymmetric fingerprinting protocols. We describe this attack, and then propose a new asymmetric fingerprinting protocol, specifically designed for Tardos codes.


Homomorphic Encryption Oblivious Transfer Quantization Index Modulation Technology Provider Semantic Security 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bao, F., Deng, R.H., Feng, P.: An efficient and practical scheme for privacy protection in the E-commerce of digital goods. In: Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 162–170. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inform. Theory (1998)Google Scholar
  3. 3.
    Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd IEEE Symposium on Foundations of Computer Science, pp. 136–145. IEEE, Los Alamitos (2002)Google Scholar
  5. 5.
    Chu, C., Tzeng, W.: Efficient k-out-of-n oblivious transfer schemes with adaptive and non-adaptive queries. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 172–183. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Deng, M., Bianchi, T., Piva, A., Preneel, B.: An efficient Buyer-Seller watermarking protocol based on composite signal representation. In: ACM MM&Sec 2009, pp. 9–18 (2009)Google Scholar
  7. 7.
    Fontaine, C., Galand, F.: A survey of homomorphic encryption for nonspecialists. EURASIP Journal on Information Security 15 (2007)Google Scholar
  8. 8.
    Furon, T., Pérez-Freire, L.: Worst case attack against binary probabilistic traitor tracing codes. In: IEEE WIFS 2009, pp. 46–50 (2009)Google Scholar
  9. 9.
    Goldreich, O.: Foundations of cryptography: Basic applications. Cambridge Univ. Pr., Cambridge (2004)CrossRefzbMATHGoogle Scholar
  10. 10.
    Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable oblivious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 265–282. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Huang, H., Chang, C.: A new design for efficient t-out-n oblivious transfer scheme (2005)Google Scholar
  12. 12.
    Kuribayashi, M.: On the Implementation of Spread Spectrum Fingerprinting in Asymmetric Cryptographic Protocol. EURASIP Journal on Inf. Security (2010)Google Scholar
  13. 13.
    Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 791. Springer, Heidelberg (1999)Google Scholar
  14. 14.
    Naor, M., Pinkas, B.: Computationally secure oblivious transfer. Journal of Cryptology 18(1), 1–35 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Oprea, A., Bowers, K.D.: Authentic time-stamps for archival storage. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 136–151. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Pfitzmann, B., Schunter, M.: Asymmetric fingerprinting. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 84–95. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  17. 17.
    Rabin, M.: How to exchange secrets by oblivious transfer. Tech. rep., Technical Report TR-81, Harvard Aiken Computation Laboratory (1981)Google Scholar
  18. 18.
    Skoric, B., Katzenbeisser, S., Celik, M.: Symmetric Tardos fingerprinting codes for arbitrary alphabet sizes. Designs, Codes and Cryptography 46(2), 137–166 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tardos, G.: Optimal probabilistic fingerprint codes. In: STOC 2003, pp. 116–125. ACM, New York (2003), Google Scholar
  20. 20.
    van Tilborg, H.: Encyclopedia of cryptography and security. Springer, Heidelberg (2005)CrossRefzbMATHGoogle Scholar
  21. 21.
    Wu, Q., Zhang, J., Wang, Y.: Practical t-out-n oblivious transfer and its applications. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 226–237. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Zhang, B., Wu, H., Feng, D., Bao, F.: Cryptanalysis of a knapsack based two-lock cryptosystem. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 303–309. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ana Charpentier
    • 1
  • Caroline Fontaine
    • 2
  • Teddy Furon
    • 1
  • Ingemar Cox
    • 3
  1. 1.INRIA-Rennes research centerRennesFrance
  2. 2.CNRS/Lab-STICC/CID, Télécom Bretagne/ITIBrestFrance
  3. 3.Dpt. of Computer ScienceUniversity College LondonLondonUnited Kingdom

Personalised recommendations