Skip to main content

Towards Joint Tardos Decoding: The ‘Don Quixote’ Algorithm

  • Conference paper
Information Hiding (IH 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6958))

Included in the following conference series:

Abstract

‘Don Quixote’ is a new accusation process for Tardos traitor tracing codes which is, as far as we know, the first practical implementation of joint decoding. The first key idea is to iteratively prune the list of potential colluders to keep the computational effort tractable while going from single, to pair,…to t-subset joint decoding. At the same time, we include users accused in previous iterations as side-information to build a more discriminative test. The second idea, coming from the field of mismatched decoders and compound channels, is to use a linear decoder based on the worst case perceived collusion channel. The decoder is tested under two accusation policies: to catch one colluder, or to catch as many colluders as possible. The probability of false positive is controlled thanks to a rare event estimator. We describe a fast implementation supporting millions of users and compare our results with two recent fingerprinting codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbe, E., Zheng, L.: Linear universal decoding for compound channels. IEEE Transactions on Information Theory 56(12), 5999–6013 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amiri, E., Tardos, G.: High rate fingerprinting codes and the fingerprinting capacity. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, pp. 336–345. SIAM, New York (2009)

    Chapter  Google Scholar 

  3. Cérou, F., Furon, T., Guyader, A.: Experimental assessment of the reliability for watermarking and fingerprinting schemes. EURASIP Jounal on Information Security (2008), iD 414962, 12 pages

    Google Scholar 

  4. Furon, T., Pérez-Freire, L.: Worst case attacks against binary probabilistic traitor tracing codes. In: Proc. First IEEE Int. Workshop on Information Forensics and Security, London, UK, pp. 46–50 (December 2009)

    Google Scholar 

  5. Knuth, D.E.: The Art of Computer Programming, Generating All Combinations and Partitions, vol. 4. Addison-Wesley, Reading (2005); Fascicle 3

    Google Scholar 

  6. Moulin, P.: Universal fingerprinting: Capacity and random-coding exponents. In: Proc. IEEE International Symposium on Information Theory, ISIT 2008, Toronto, ON, Canada, pp. 220–224 (July 2008)

    Google Scholar 

  7. Nuida, K.: Short collusion-secure fingerprint codes against three pirates. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 86–102. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Nuida, K., Fujitsu, S., Hagiwara, M., Kitagawa, T., Watanabe, H., Ogawa, K., Imai, H.: An improvement of discrete Tardos fingerprinting codes. Designs, Codes and Cryptography 52(3), 339–362 (2009), http://eprint.iacr.org/2008/338

    Article  MathSciNet  MATH  Google Scholar 

  9. Payne, W.H., Ives, F.M.: Combination generators. ACM Transactions on Mathematical Software 5(2), 163–172 (1979)

    Article  Google Scholar 

  10. Pérez-Freire, L., Furon, T.: Blind decoder for binary probabilistic traitor tracing codes. In: Proc. First IEEE Int. Workshop on Information Forensics and Security, London, UK, pp. 56–60 (December 2009)

    Google Scholar 

  11. Saito, M., Matsumoto, M.: A PRNG specialized in double precision floating point numbers using an affine transition. In: Proc. Eighth Int. Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, MCQMC 2008, pp. 589–602. Springer, Montréal (2008)

    Google Scholar 

  12. Skoric, B., Katzenbeisser, S., Celik, M.: Symmetric Tardos fingerprinting codes for arbitrary alphabet sizes. Designs, Codes and Cryptography 46(2), 137–166 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tardos, G.: Optimal probabilistic fingerprint codes. In: Proc. 35th ACM Symposium on Theory of Computing, San Diego, CA, USA, pp. 116–125 (2003), http://www.renyi.hu/~tardos/publications.html

  14. Wu, M., Trappe, W., Wang, Z.J., Liu, K.J.R.: Collusion-resistant fingerprinting for Multimedia. IEEE Signal Processing Magazine 21(2), 15–27 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meerwald, P., Furon, T. (2011). Towards Joint Tardos Decoding: The ‘Don Quixote’ Algorithm. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds) Information Hiding. IH 2011. Lecture Notes in Computer Science, vol 6958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24178-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24178-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24177-2

  • Online ISBN: 978-3-642-24178-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics