Statistical Decision Methods in Hidden Information Detection

  • Cathel Zitzmann
  • Rémi Cogranne
  • Florent Retraint
  • Igor Nikiforov
  • Lionel Fillatre
  • Philippe Cornu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6958)


The goal of this paper is to show how the statistical decision theory based on the parametric statistical model of the cover media can be useful in theory and practice of hidden information detection.


False Alarm Cover Medium Statistical Decision Secret Message Nuisance Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borovkov, A.A.: Mathematical Statistics. Gordon and Breach Sciences Publishers, Amsterdam (1998)zbMATHGoogle Scholar
  2. 2.
    Cogranne, R., Zitzmann, C., Fillatre, L., Retraint, F., Nikiforov, I., Cornu, P.: A cover image model for reliable steganalysis. In: Filler, T., et al. (eds.) IH 2011. LNCS, vol. 6958, pp. 178–192. Springer, Heidelberg (2011)Google Scholar
  3. 3.
    Ferguson, T.: Mathematical Statistics: A Decision Theoretic Approach. Academic Press, London (1967)zbMATHGoogle Scholar
  4. 4.
    Fillatre, L., Nikiforov, I.: A statistical detection of an anomaly from a few noisy tomographic projections. Journal of Applied Signal Processing, Special issue on Advances in Intelligent Vision Systems: Methods and Applications-Part II 14, 2215–2228 (2005)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Fillatre, L., Nikiforov, I.: Non-bayesian detection and detectability of anomalies from a few noisy tomographic projections. IEEE Trans. Signal Processing 55(2), 401–413 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fillatre, L., Nikiforov, I., Retraint, F.: ε-optimal non-bayesian anomaly detection for parametric tomography. IEEE Transactions on Image Processing 17(11), 1985–1999 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fridrich, J., Goljan, M.: On estimation of secret message length in LSB steganography in spatial domain. In: Proc. of SPIE, pp. 23–34. Addison-Wesley, Reading (2004)Google Scholar
  8. 8.
    Ker, A.D.: Locating steganographic payload via WS residuals. In: Proceedings of the 10th ACM Workshop on Multimedia and Security, Oxford, September 22-23, pp. 27–31 (2008)Google Scholar
  9. 9.
    Ker, A.D., Böhme, R.: Revisiting weighted stego-image steganalysis. In: Delp, E.J., Wong, P.W. (eds.) Proceedings SPIE, Electronic Imaging, Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, San Jose, CA, January 27-31, vol. 6819, pp. 51 – 517 (2008)Google Scholar
  10. 10.
    Ker, A.D., Pevný, T., Kodovský, J., Fridrich, J.: The square root law of steganographic capacity. In: MM&Sec 2008: Proceedings of the 10th ACM Workshop on Multimedia and Security, pp. 107–116. ACM, New York (2008), Google Scholar
  11. 11.
    Le Cam, L.: Asymptotic Methods in Statistical Decision Theory. Series in Statistics. Springer, New York (1986)CrossRefzbMATHGoogle Scholar
  12. 12.
    Le Cam, L., Yang, G.L.: Asymptotics in Statistics. Springer, Heidelberg (1990)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lehmann, E.: Testing Statistical Hypotheses, 2nd edn. Chapman & Hall, Boca Raton (1986)CrossRefzbMATHGoogle Scholar
  14. 14.
    Dabeer, O., Sullivan, K., Madhow, U., Chandrasekaran, S.: Detection of hiding in the least significant bit. IEEE Trans. Signal Processing 52(10), 3047–3058 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Roussas, G.G.: Contiguity of Probability Measures, Some Applications in Statistics. Cambridge University Press, Mass (1972)CrossRefzbMATHGoogle Scholar
  16. 16.
    Scharf, L., Friedlander, B.: Matched subspace detectors. IEEE Trans. Signal Processing 42(8), 2146–2157 (1994)CrossRefGoogle Scholar
  17. 17.
    Shiryaev, A.N.: Probability, 2nd edn. Springer, New York (1996)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Cathel Zitzmann
    • 1
  • Rémi Cogranne
    • 1
  • Florent Retraint
    • 1
  • Igor Nikiforov
    • 1
  • Lionel Fillatre
    • 1
  • Philippe Cornu
    • 1
  1. 1.ICD - LM2S - Université de Technologie de Troyes - UMR STMR CNRS 6279Troyes cedexFrance

Personalised recommendations