Skip to main content

Differentially Private Billing with Rebates

  • Conference paper
Information Hiding (IH 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6958))

Included in the following conference series:

Abstract

A number of established and novel business models are based on fine grained billing, including pay-per-view, mobile messaging, voice calls, pay-as-you-drive insurance, smart metering for utility provision, private computing clouds and hosted services. These models apply fine-grained tariffs dependent on time-of-use or place of-use to readings to compute a bill.

We extend previously proposed billing protocols to strengthen their privacy in two key ways. First, we study the monetary amount a customer should add to their bill in order to provably hide their activities, within the differential privacy framework. Second, we propose a cryptographic protocol for oblivious billing that ensures any additional expenditure, aimed at protecting privacy, can be tracked and reclaimed in the future, thus minimising its cost. Our proposals can be used together or separately and are backed by provable guarantees of security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R., Fuloria, S.: On the security economics of electricity metering. In: The Ninth Workshop on the Economics of Information Security (2010)

    Google Scholar 

  2. Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., Irwin, D.: Private memoirs of a smart meter. In: 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings (BuildSys 2010), Zurich, Switzerland (November 2010)

    Google Scholar 

  3. Balasch, J., Rial, A., Troncoso, C., Preneel, B., Verbauwhede, I., Geuens, C.: Pretp: Privacy-preserving electronic toll pricing. In: USENIX Security Symposium, pp. 63–78. USENIX Association (2010)

    Google Scholar 

  4. Bohli, J.M., Sorge, C., Ugus, O.: A privacy model for smart metering. In: 2010 IEEE International Conference on Communications Workshops (ICC), pp. 1–5 (May 2010)

    Google Scholar 

  5. Rial, A., Danezis, G.: Privacy-preserving smart metering. Technical Report MSR-TR-2010-150, Microsoft Research (November 2010)

    Google Scholar 

  6. Lipner, S.B.: A comment on the confinement problem. In: Proceedings of the Fifth ACM Symposium on Operating Systems Principles, SOSP 1975, pp. 192–196. ACM, New York (1975)

    Google Scholar 

  7. Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Dwork, C.: Differential privacy in new settings. In: Charikar, M. (ed.) SODA, pp. 174–183. SIAM, Philadelphia (2010)

    Google Scholar 

  9. Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy mechanisms. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 351–360. ACM, New York (2009)

    Google Scholar 

  10. Danezis, G., Kohlweiss, M., Rial, A.: Differentially private billing with rebates. Cryptology ePrint Archive, Report 2011/134 (2011), http://eprint.iacr.org/

  11. Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., Talwar, K.: Privacy, accuracy, and consistency too: a holistic solution to contingency table release. In: Libkin, L. (ed.) PODS, pp. 273–282. ACM, New York (2007)

    Google Scholar 

  12. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145 (2001)

    Google Scholar 

  13. Kusters, R.: Simulation-based security with inexhaustible interactive turing machines. In: 19th IEEE Computer Security Foundations Workshop, pp. 12–320. IEEE, Los Alamitos (2006)

    Google Scholar 

  14. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Danezis, G., Kohlweiss, M., Rial, A. (2011). Differentially Private Billing with Rebates. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds) Information Hiding. IH 2011. Lecture Notes in Computer Science, vol 6958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24178-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24178-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24177-2

  • Online ISBN: 978-3-642-24178-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics